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ABSTRACT

This paper considers asymptotic perfect secrecy and asymp-
totic perfect estimation in distributed estimation for large sen-
sor networks under threat of an eavesdropper, which has ac-
cess to all sensor outputs. To measure secrecy, we compare
the estimation performance at the fusion center and at eaves-
dropper in terms of their respective Fisher Information. We
analyze the Fisher Information ratio between the fusion cen-
ter and eavesdropper and derive the maximum achievable ra-
tio when the channels between sensors and eavesdropper are
noisy binary symmetric channels. Furthermore, when the fu-
sion center has noiseless channels, we show that the Fisher
Information ratio can be made arbitrarily large by careful de-
sign of the sensor quantization rules. As a result, asymptotic
perfect secrecy can be achieved by making the Fisher Infor-
mation at Eve arbitrarily small while keeping the Fisher In-
formation at the fusion center arbitrarily large. The secrecy
design method in this paper might greatly enhance the secrecy
in distributed estimation for large sensor networks.

Index Terms— Eavesdropping, Distributed Estimation,
Asymptotic Perfect Secrecy, Physical Layer Security

1. INTRODUCTION

A large sensor network (SN) consists of a large number of
low-cost, low-power, mobile and miniature sensors. Large
SNs are widely employed in many applications, such as
surveillance, health-care, cyber-physical systems, diagnostics
of complex systems [1] and so on. For these applications,
the data collected by the sensors are extremely sensitive, and
care must be taken to ensure this information is not leaked
to any third party. In SNs, the sensor outputs often must
be transmitted across a wireless communication network to
legitimate users e.g., fusion center (FC), for final inference-
making. Because of the wireless network links, the data are
more vulnerable to security breaches. An eavesdropping at-
tack, where a listener (Eve) taps the wireless link between the
sensors and the FC, forms the basis or starting point for many
different attack strategies [2], and will be our focus.

The strategies of mitigating eavesdropping attacks can be
mainly classified into two categories, computational security
and information-theoretic (physical layer) approaches [3].

The computational security approaches (cryptosystems) may
not work well if the devices (nodes in SNs) do not have the
computational power [4]. On the other hand, information-
theoretic security approaches, utilizing the characteristics of
the physical layer, have gained considerable attention as a
complement to computational security methods to enhance
the security, secrecy and privacy of SNs [5–8]. Even though
the work in [9] based on information-theoretic approach may
provide a nearly perfect secrecy, the solution tends to require
long block codes that are complicated to be implemented in
SNs with their stringent constraints on time delay, bandwidth,
and power [10]. Therefore, a new approach based on physical
layer security approach is needed for large SNs to mitigate
eavesdroppers.

Aiming to estimate the values of a group of parameters
based on a network of collaborating sensors [11–14], dis-
tributed estimation has been an important and active research
area over the past several decades. Several attempts were
made to address the issue of eavesdroppers in distributed
estimation. Aysal et al. proposed to solve the problem by
adding a stochastic cipher as a security module, to randomly
change the sensor outputs and disguise them from the eaves-
dropper [15]. Guo et al. considered using multiple-input
multiple-output beamforming strategies to combat the eaves-
droppers, where local sensors use the analog amplify and for-
ward scheme to communicate with the FC over a slow-fading
orthogonal multiple access channel [16]. In [17], Khan and
Stanković proposed to securely estimate distributed data in
cyber-physical systems by verifying statistical consistency on
the nodal, local information and physical-layer feedback.

Notice that the aforementioned efforts considered SNs
with a fixed number of sensors and did not focus on achiev-
ing asymptotic perfect secrecy (APS), where Eve could not
obtain any useful information when there is no limitations
on the number of sensors. In this paper, we investigate APS
and concentrate on enhancing the secrecy of distributed es-
timation against eavesdroppers in large SNs using physical
layer security approach. To measure secrecy, we compare the
estimation performance at the FC and at Eve in terms of their
respective Fisher Information (FI). We analyze the FI ratio
between the FC and Eve and derive the maximum achievable
ratio when the channels between sensors and Eve are noisy
binary symmetric channels (BSCs). Furthermore, when the
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Fig. 1: Parallel sensor network model under eavesdropper at-
tack, who eavesdropson the output of sensor i, transmitted
wirelessly via a BSC with BER ρE,i. The FC receives sensor
i data through another BSC with BER ρF,i < ρE,i.

FC has noiseless channel, we show that the FI ratio can be
made arbitrarily large by careful design of the sensor quan-
tization rules. As a result, APS can be achieved by making
the FI at Eve arbitrarily small while keeping the FI at the FC
arbitrarily large.

2. DISTRIBUTED SENSOR NETWORK MODEL

The parallel SN model is shown in Fig 1, where parameter
θ is fixed but unknown. In many applications, the sensors
are either randomly deployed or placed in similar locations
to the environment to be monitored. In such scenarios, the
sensor observations can be assumed to be conditionally inde-
pendent and identically distributed (i.i.d) given the underlying
parameter θ. Under this assumption, the sensor observations
X = [X1, X2, . . . , XN ] can be written as follows,

f(X|θ) =

N∏
i=1

f(Xi|θ),

where f(X|θ) and f(Xi|θ) are known probability density
functions (pdfs) and Xi is the observation of sensor i.

In this paper, we consider the classic estimation problem,

Xi = θ + Zi, i = 1, 2, . . . , N, (1)

where Zi is an additive i.i.d zero mean observation noise with
pdf f(·). Due to the bandwidth constraint between local sen-
sors and the FC, we assume the Xi are quantized to a single
bit of compressed data, Ui, via the quantization rule

Ui =

{
1, Xi > ηi
0, Xi ≤ ηi ∀i, (2)

where the threshold, ηi, is fixed and known to both the FC
and Eve. To reduce the system complexity and improve sys-
tem robustness, we assume that the sensors employ identical
quantization rules such that η1 = η2 = · · · = ηN = η.
Because the sensors observations are conditionally i.i.d., we
have

Pr(Ui = 1|θ) = β = Pr(θ + Zi > η) = Q(η − θ),
Pr(Ui = 0|θ) = 1− β = 1− Pr(Ui = 1|θ),

where Q(t) =
∫∞
t
fZ(x)dx is the complementary distribu-

tion function of Z.
The communication channels between sensors and the re-

ceivers are assumed to be BSCs. Sensor i sends decision Ui
to the FC over a BSC with bit error rate (BER) ρF,i < 1

2 ,
with the received decision Vi. All of the sensors outputs are
eavesdropped by Eve via a set of parallel wiretapping chan-
nels. Eve receives Wi, from sensor i as an output of a sepa-
rate BSC channel with BER ρE,i <

1
2 . We assume that Eve’s

channel is noisier than the FC’s such that ρE,i > ρF,i [18,19].
Assuming that the sensors are within similar distances to Eve
and the FC, then the channels can be assumed to be inde-
pendent and identical, i.e., ρF = ρF,1 = · · · = ρF,N and
ρE = ρE,1 = · · · = ρE,N .

As a result, the observations at the FC and Eve possess the
following quality,

Pr(Vi = 1|θ) = (1− 2ρF ) Pr(Ui = 1|θ) + ρF ,

Pr(Wi = 1|θ) = (1− 2ρE) Pr(Ui = 1|θ) + ρE .

For the purposes of this paper we analyze identical channels,
although non-identical channels can be treated in a similar
fashion.

3. ESTIMATION PERFORMANCE AND
ASYMPTOTIC PERFECT SECRECY

We now evaluate the estimation performance at the FC and
Eve, using the widely employed Mean Squared Error (MSE)
metric. The Cramér-Rao inequality given observations V =
[V1, . . . , VN ]T and known quantization rules [20, 21], estab-
lishes a MSE lower bound for any unbiased estimator of θ̂F ,
εF . Specifically [22],

εF , E
(
θ̂ − θ

)2
≥ CRLB(V; θ) =

1

I(V; θ)
, (3)

where CRLB is Cramér-Rao lower bound [23] and I(V; θ) is
the FI, given by,

I(V; θ) , EV

(
∂ log p(V; θ)

∂θ

)
(a)
=

N∑
i=1

EVi

(
∂ log p(Vi; θ)

∂θ

)
(b)
= NI(η, θ, ρF ),
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where p(V; θ) is probability density function (PDF) of pa-
rameter θ given V [23]. Note, (a) and (b) follow from the
sensors observations conditionally i.i.d property, the identical
channels assumption, and

I(η, θ, ρ) =

f2(η − θ)(1− 2ρ)2

(ρ+ (1− 2ρ)Q(η − θ))(1− ρ− (1− 2ρ)Q(η − θ))
(4)

is the per sensor FI when the sensor observation is received
over a BSC with BER ρ.

Similarly, at Eve with W = [W1, . . . ,WN ]T , the MSE
lower bound, εE , for any unbiased estimator θ̂E is

εF , E
(
θ̂ − θ

)2
≥ CRLB(W; θ)

=
1

I(W; θ)
=

1

NI(η, θ, ρE)
.

3.1. Fisher Information Ratio

Based on the CRLB, the secrecy design problems can be
framed as maximizing the FI at the FC while minimizing the
FI at Eve. Therefore, we introduce the FI ratio R as an in-
termediate step to achieve these secrecy requirements, with a
higher R indicating improved secrecy. The FI ratio is defined
as follows,

R(η, θ) ,
I(η, θ, ρF )

I(η, θ, ρE)

=
(1− 2ρF )2(ρE + (1− 2ρE)Q(η − θ))
(1− 2ρE)2(ρF + (1− 2ρF )Q(η − θ))

× (1− ρE − (1− 2ρE)Q(η − θ))
(1− ρF − (1− 2ρF )Q(η − θ))

=

(
ρE

1−2ρE +Q(η − θ)
)(

1−ρE
1−2ρE −Q(η − θ)

)
(

ρF
1−2ρF +Q(η − θ)

)(
1−ρF
1−2ρF −Q(η − θ)

)
=
−Q2(η − θ) +Q(η − θ) + ρE(1−ρE)

(1−2ρE)2

−Q2(η − θ) +Q(η − θ) + ρF (1−ρF )
(1−2ρF )2

= 1 +

ρE(1−ρE)
(1−2ρE)2 −

ρF (1−ρF )
(1−2ρF )2

−
(
Q2(η − θ)− 1

2

)2
+ 1

4 + ρF (1−ρF )
(1−2ρF )2

.

(5)

Notice that the function ρ(1−ρ)
(1−2ρ)2 is a monotone increasing

function for ρ < 0.5, and since ρF < ρE < 1
2 , then

ρE(1−ρE)
(1−2ρE)2 −

ρF (1−ρF )
(1−2ρF )2 > 0. Therefore, R(η, θ) is a de-

creasing function of Q(η − θ) when Q(η − θ) ∈ (0, 0.5] and
increasing function of Q(η − θ) when Q(η − θ) ∈ [0.5, 1).
The supremum of the FI ratio,

sup(R) =
ρE(1− ρE)(1− 2ρF )2

ρF (1− ρF )(1− 2ρE)2
, (6)

is achieved when Q(η − θ) approaches to 0 or 1. However,
such choices of Q are not desirable in that they result in
f(η − θ) = −dQ(η−θ)

dη = 0 and further the FI at the FC,
NI(θ, η, ρF )=0, indicating that the FC does not obtain any
useful information for estimation either. Nevertheless, as R
is a continuous function of Q, to achieve the design goal, we
can choose Q(η − θ) close to 0 or 1 and increase the number
of sensors N . In other words, we need to design η and N
jointly to realize maximum achievable performance at the FC
and secrecy against Eve.

3.2. Asymptotic Perfect Secrecy

In order to achieve APS against Eve, we require

I(W; θ) = NI(η, θ, ρE)→ 0, N →∞. (7)

Naturally, we also require the SN to have an asymptotic per-
fect estimation (APE) at the FC, i.e.,

I(V; θ) = NI(η, θ, ρE)→∞, N →∞. (8)

Notice that when the FC has noiseless channels such that
ρF = 0, the maximum FI ratio sup(R) = ∞, indicating
it is possible to simultaneously achieve both APE and APS
by choosing the appropriate η as a function of N . Next, we
demonstrate how to do so for the case where the observa-
tion noises are Gaussian distributed, with similar design ap-
proaches employed for other noise distributions.

4. ESTIMATION IN GAUSSIAN NOISE

We now consider the case where the observation noise, Zi,
follows the standard Gaussian distribution with zero mean
and unit variance, where f(x) = 1√

2π
e

−x
2 . According to the

Mills ratio [24], x+ 1 > f(x)
Q(x) > x, we have

f(x)

xQ(x)
→ 1, as x→∞.

Selecting η such that e
−(η−θ)2

2 = N
−2
3 , results in η =√

4
3 logN + θ. Thus, by choosing η =

√
4
3 logN , η � θ for

a fixed but unknown θ, and N sufficiently large, e−(η−θ)
2 ∝

N
−3
4 . As a result, the total FI at the FC

NIF ∝ N(η − θ)f(η − θ) = N(η − θ) 1√
2π
e

−(η−θ)2
2

∝ N
√

4

3
logN N

−2
3 = N

1
3

√
4

3
logN →∞.

(9)

The total FI at Eve is,

NIE ∝ Nf2(η −A) = N
1

2π
e−(η−θ)

2

∝ N
(
N

−2
3

)2
= N

−1
3 → 0.

(10)
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Fig. 2: Total Fisher Information for the FC and Eve with dif-

ferent number of sensors given θ = 1, η =
√

4
3 logN .

In summary, by choosing η =
√

4
3 logN , then both APS

and APE can be achieved under standard Gaussian observa-
tion noise. Other observations noise can be analyzed in a sim-
ilar fashion.

5. SIMULATION

In this section, we compare the estimation performance at Eve
and at the FC via the distributed estimation of a fixed but un-
known signal with zero mean additive white Gaussian noise.
Specifically, the sensor observations are given in Equation (1),
where Zi ∼ N (0, 1) is the normalized observation noise fol-
lowing a standard Gaussian distribution. Both the FC and Eve
employ Maximum Likelihood Estimation (MLE) to obtain θ̂F
and θ̂E based on V and W, respectively. The two MSE esti-
mates are

θ̂F =

(
η −Q−1

(
V̄ − ρF
1− 2ρF

))
θ̂E =

(
η −Q−1

(
W̄ − ρE
1− 2ρE

))
,

(11)

where V̄ , W̄ are the mean of received outputs for the FC and
Eve, respectively.

We first examine the system secrecy when the FC has a
perfect channel, ρF = 0, Eve has a noisy channel, ρE = 0.40,

and the threshold η =
√

4
3 logN . First, the FI as a function

of N for θ = 1 is displayed in Fig. 2. We see that the FI at
the FC is increasing with the number of sensors, while the FI
at Eve is close to zero, consistent with the proofs for Equation
(9) and (10).

Under the same conditions of η, ρE and ρF , via Monte-
Carlo simulation with 1000 trials, we plot the resulting mean
and MSE of the estimated parameters θF and θE by the FC
and Eve in Fig 3 and Fig. 4, respectively, where θ ∈ [0, 1.4],
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Fig. 3: Mean of estimated signals by the FC and Eve with
different BERs. The FC’s estimation is close to the ground
truth.
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and the number of sensors is fixed at N = 100. In both fig-
ures, the trends show that Eve, with a larger BSC BER, cannot
accurately estimate θ. Meanwhile, the FC can almost per-
fectly estimate the parameter, where the estimated parameter
mean is close to the ground truth in Fig 3 and the MSE is
close to zero in Fig 4.

6. CONCLUSION

We considered the asymptotic secrecy design problem in
distributed estimation for large SNs that were subject to an
eavesdropping attack. The maximum achievable secrecy
performance was derived and it was proved that under the
condition that Eve has a noisy channel and the FC has a
noiseless channel, both APS and APE can be achieved. The
secrecy design method in this paper might greatly enhance the
secrecy in distributed estimation for large sensor networks.
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