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ABSTRACT

We propose a system for indoor localization using intensity-
controllable LED light fixtures and light sensors mounted on
the ceiling. While providing accurate location estimates, our
approach preserves user privacy and is robust to ambient light
conditions. We develop a LASSO algorithm and a localized
ridge regression algorithm for locating a single object. In syn-
thetic experiments, our localized ridge regression algorithm
achieves an average localization error ranging from 0.24in to
1.39in, for different object sizes, in a 7×12-foot room. The
localized ridge regression algorithm also shows the ability to
locate multiple objects in experiments with a real-world oc-
cupancy scenario.

Index Terms— Indoor localization, LASSO, light trans-
port analysis, ridge regression

1. INTRODUCTION

Indoor localization is a key step in many location-based ap-
plications for indoor environments. These include human
tracking, location-based Internet access, indoor navigation,
surveillance, occupancy-based lighting and HVAC control,
etc. In the context of smart rooms, accurate indoor localiza-
tion is expected to help save energy, improve productivity,
and offer health benefits.

Various systems have been designed for indoor localiza-
tion [1]. While GPS [2] works well outdoors, it is not robust
for indoor localization. Active systems, that require users to
wear an electronic device, e.g., Active Badge Location [3],
Cricket [4], SpotON [5], and LANDMARC [6], are intrusive
and are not user friendly. Passive systems do not require a
user to wear an active device. Instead, they exploit, for exam-
ple, WiFi signals [7, 8, 9] or air flow [10]. However, they re-
quire a sufficiently strong signature (disruption of WiFi signal
or air flow), and their performance is easily affected by envi-
ronmental noise and signal reflections off walls, furniture, etc.
Localization can be also performed using visual and auditory
cues via multi-camera systems, e.g., EasyLiving Tracker [11],
W4 [12], W4S [13], and Hydra [14], single-camera systems
[15], or microphone arrays [16]. While such systems provide
accurate localization, they raise privacy concerns on account
of image and/or voice capture.

Recently, indoor localization methods that preserve user

privacy have been proposed. One common approach is by de-
grading data, either optically prior to capture by the sensor
[17] or digitally, post-capture [18]. While the first method re-
quires manipulation of optics and results in very limited range
of degradations, the other method is susceptible to eavesdrop-
ping prior to degradation. An alternative is to use ultra-low
resolution sensors. Jia and Radke [19] developed a privacy-
preserving person localization, tracking and coarse pose esti-
mation system with ceiling-mounted time-of-flight (ToF) sen-
sors. They showed that their algorithm works effectively for
0.25m sensor spacing, in both real and simulated environ-
ments. Wang et al. [20] proposed a system to estimate room
occupancy using LED light fixtures and color sensors. They
proposed a light blockage model for 3D occupancy estimation
with wall-mounted sensors, and a light reflection model for
2D floor-plane occupancy estimation with ceiling-mounted
sensors. In the light reflection model, they add perturbations
to the inputs of light fixtures and estimate an occupancy “con-
fidence map” using light reflected by the floor.

In this paper, we develop an indoor localization algo-
rithm based on floor-reflected light transport analysis that
can accurately locate an object in a room while preserving
user privacy. To this end, we revisit Wang et al.’s light re-
flection model [20] and propose two principled localization
algorithms that are able to locate a single object. We prove
the effectiveness of our algorithms via both synthetic and
real-world experiments.

2. ALGORITHM

2.1. Light Reflection Model

Wang et al.’s light reflection model [20] is an active light sens-
ing model that uses both reflected light measurements and
light source modulation information (Fig. 1). In this model,
the ceiling-mounted LED fixtures provide maximum light in-
tensity Imax in the vertical direction, and the light intensity at
angle θ to the normal direction is Imaxq(θ), where q(θ) is the
intensity distribution function, shown in Fig. 2.

For an LED fixture number j and a small area dS1 on the
floor plane at location s, the luminous flux arriving at dS1 is:

Φ1(j; s) = x(j)Imaxq(θ1)
dS1 cos θ1

4πD2
1

.
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Fig. 1. Light reflection model proposed by Wang et al. [20]
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Fig. 2. Light intensity distribution function q(θ).

where x(j) is the relative intensity of source j, scaled to the
range [0, 1], while dS1 cos θ1

4πD2
1

is a solid angle from the LED
fixture to area dS1. Note that θ1 andD1 are functions of j and
s, but for convenience of notation we omit this dependence.

We assume that the light reflected by the floor obeys the
Lambert’s cosine law, the light sensor has an area of dS2, and
the floor has albedo α(s) at location s. Then, the luminous
flux received by sensor number i is:

Φ2(i, j; s) = α(s)Φ1(j; s) cos θ2
dS2 cos θ2

4πD2
2

(1)

where θ2 and D2 are again functions of i and s. By defining

C(i, j; s) =
Φ2(i, j; s)

x(j)α(s)dS1
,

which only depends on the room geometry, we can express
the total flux at sensor i produced by unit flux from source j
as follows:

A(i, j) =

∫
SF

α(s)C(i, j; s) ds (2)

where SF is the whole floor plane.

2.2. Light Transport Model

In a room with Nf light fixtures and Ns sensors, there is a
linear relationship between fixture outputs and sensor outputs:

y = Ax + b

where x is an Nf × 1 vector of intensities x(j) from all LED
fixtures, y is an Ns × 1 vector of all sensor outputs, b is an
Ns× 1 vector accounting for the effects of ambient light, and

A is anNs×Nf light transport matrix [20] whose ij-th entry
is A(i, j) defined in (2).

A change in the room state (change in albedo α(s)) leads
to a change in matrix A. To estimate the location of the
change, we need to recover matrix A. We assume that b is
a constant vector since ambient light changes slowly com-
pared to the modulation-response time. In order to recover
A, we need to induce at leastNf linearly-independent pertur-
bations ∆x in x, and measure the corresponding changes in
sensor outputs ∆y. Let ∆X = [∆x1, ...,∆xn] and ∆Y =
[∆y1, ...,∆yn] where n ≥ Nf . Then, the least squares solu-
tion for A is given by [20]:

A = ∆Y∆XT (∆X∆XT )−1.

2.3. LASSO Algorithm

Suppose that we have obtained two light transport matrices:
A0 for the initial state (e.g., empty room) and A for a new
state (e.g., object in the room). If we take the difference E =
A−A0 and use equation (2), we obtain:

E(i, j) =

∫
SF

∆α(s)C(i, j; s) ds (3)

where ∆α(s) is the change of albedo between the two states.
Assuming that objects are flat, ∆α(s) characterizes the loca-
tion and size of the introduced object. We discretize equation
(3) by assuming that the room’s width is W , its length is L
and the quantization step is δ, thus leading to:

e = δ2C∆α (4)

where e is a vector of length Nf × Ns formed by scanning
matrix E, C is a matrix with Nf ×Ns rows and bWδ c × b

L
δ c

columns obtained by scanning C(i, j; s), and ∆α is a vector
of length bWδ c×b

L
δ cwith each entry corresponding to a point

on the discretized floor grid (location s).
Generally, the area of change is small compared to the

floor size, so it is reasonable to assume that ∆α is a sparse
vector. Inspired by LASSO regression, we first solve for ∆α
the following convex optimization problem with l1 penalty :

arg min
∆α
‖e− δ2C∆α‖2l2 + λδ2‖∆α‖l1 , (5)

where λ is a tuning parameter. Then, in order to estimate
the location of the change, we compute the centroid of the
magnitude of ∆α:

Locx =

∑
k Locx(k)|∆α(sk)|∑

k |∆α(sk)|

Locy =

∑
k Locy(k)|∆α(sk)|∑

k |∆α(sk)|

(6)

where Locx(k) and Locy(k) are the x and y coordinates of
the k-th point on the discretized floor (at location sk).
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2.4. Localized Ridge Regression Algorithm

We also propose to solve for ∆α via a two-step approach.
This method is a principled refinement of Wang et al.’s floor
plane occupancy confidence map [20], defined as follows:

map(s) =

∑Ns

i=1

∑Nf

j=1E(i, j)C(i, j; s)

(
∑Ns

i=1

∑Nf

j=1 C(i, j; s))
(7)

which holds when the floor albedo is uniform. The confidence
map is an `1-normalized correlation between the columns of
C (corresponding to different floor locations) and E. It pro-
vides coarse information about the floor-plane occupancy dis-
tribution. A high value in the confidence map at some location
implies that this location is occupied with large probability,
and vice versa.

First, we calculate the confidence map on the discretized
floor plane. Then, in the second step, we perform ridge re-
gression in an area Slocal where the confidence map value is
above a threshold (area that is more likely to be occupied):

arg min
∆αlocal

‖e− δ2Clocal∆αlocal‖2l2 + σδ2‖∆αlocal‖2l2 , (8)

where Clocal contains columns of C corresponding to points
inside Slocal, and σ is a tuning parameter. We obtain a closed-
form solution by setting the gradient to zero. The final solu-
tion ∆α is equal to ∆αlocal inside Slocal and 0 elsewhere.

3. EXPERIMENTAL RESULTS

3.1. Synthetic Data

We simulated a cuboid room in MATLAB. The room is 85.5in
wide, 135.0in long and 86.4in tall [20]. We placed 12 LED
light fixtures and 12 light intensity sensors on the ceiling of
the simulated room. The light intensity of LED fixtures is
continuously adjustable between zero and some maximum in-
tensity. The floor albedo is assumed to be uniform at α = 0.5.
We also assume that there is no reflection by the walls or the
ceiling, and no direct light path from fixtures to sensors.

In each experiment, we placed a square object on the floor.
The object is Lambertian with albedo α = 0.9. We dis-
cretized the floor with quantization step δ = 1. For each
occupancy scenario (before and after change), we generated
13 fixture input vectors x (base light and 12 perturbations),
and calculated the corresponding sensor output vectors y, so
that we obtain 12 (∆x,∆y) pairs, enough to recover the light
transport matrix A. Each entry of x is a random number uni-
formly distributed in [0, 1] range.

The tuning parameter λ (or σ) was chosen to optimize
the performance for each method. In the localized ridge re-
gression algorithm, the threshold to identify Slocal was set to
0.75×max(confidence map).

We evaluated the performance of both algorithms in terms
of the localization error defined as the Euclidean distance be-
tween the ground-truth location (the geometric center of the

object) and the estimated location (6). A sample ground-truth
location, the estimated confidence map (7) and the results
of the LASSO and localized ridge regression algorithms are
shown in Fig. 3.
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Fig. 3. Sample ground-truth location, estimated confidence
map, and the results of LASSO and localized ridge regression
algorithms. Red: positive ∆α, green: negative ∆α.

We have performed numerous experiments with different
object sizes. For each object size, we repeated the experi-
ment 100 times; the location of the object among the 100
tries was uniformly distributed on the floor plane. Table 1
shows the average localization error of the LASSO and lo-
calized ridge regression algorithms, as well as those obtained
using the maximum and the centroid of the confidence map.

We note that both the LASSO and localized ridge regres-
sion algorithms perform better than localization with the con-
fidence map in terms of localization error. The localized ridge
regression algorithm has the best overall performance.

Fig. 4 compares the average running times of the LASSO
and localized ridge regression algorithms. The localized ridge
regression algorithm runs much faster than the LASSO al-
gorithm because it has a closed-form solution which can be
computed directly without using a gradient descent algorithm
that involves initialization and iterations.
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Fig. 4. Average running time with respect to object size.
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Table 1. Average localization error for different object sizes.

Object width and length [in]
Method 1 2 5 10 20 30 50 80
LASSO 11.0131 6.0740 1.1698 0.3877 0.4203 0.3702 0.3746 0.4018

Localized ridge regression 0.6870 0.7096 0.5978 0.4255 0.2438 0.4790 1.3901 0.3264
Maximum of confidence map 26.3846 27.3360 27.7620 28.1792 31.2101 33.6728 36.2543 32.8679
Centroid of confidence map 24.9388 24.4359 23.6096 22.0416 19.7851 17.2605 13.2965 8.0171

3.2. Real Data

We also performed experiments on real data recorded in a
LESA testbed1. The testbed room has the same size as the
simulated room, with 12 color-controllable LED fixtures and
12 optical light sensors on the ceiling. Each LED fixture has
3 color channels (R,G,B) with adjustable intensity, and each
color sensor has 4 output channels (R,G,B, Unfiltered white).
Two datasets are available: one recorded when the room is
empty and one when it is occupied. In the latter scenario, two
people and a chair occupy one side of the room (Fig. 5).

Fig. 5. Four views of the LESA testbed occupied by 2 people
and a chair [20].

Our algorithm uses only intensity values that we extract
from RGB channels similarly to Wang et al. [20] as fol-
lows. While matrix E in (3) considers only single-channel
fixtures and sensors, and thus is of dimension Ns × Nf , in
the LESA testbed we have 3-channel fixtures and 4-channel
sensors. Therefore, in this case the E matrix is of dimension
4Ns× 3Nf . We aggregate this multi-channel matrix E into a
single-channel matrix Ê of dimension Ns ×Nf by summing
up those entries in E that correspond to the impact of a certain
color channel of an LED fixture on the same color channel of
a color sensor (i.e., R-R, G-G and B-B) and ignoring the unfil-
tered white channel. Subsequently, we applied the localized
ridge regression algorithm to the aggregated matrix Ê. The

1The testbed is located at NSF’s Lighting Enabled Systems and Applica-
tions (LESA) Engineering Research Center (Rensselaer Polytechnic Institute,
Boston University, University of New Mexico).

results are shown in Fig. 6.

0 20 40 60 80 100 120
0

20

40

60

80

0.2

0.4

0.6

0.8

1

(a) Occupancy
confidence map

0 20 40 60 80 100 120
0

20

40

60

80 Object locations

(b) ∆α obtained by localized
ridge regression algorithm

Fig. 6. Confidence map and the result of the localized ridge
regression algorithm on real data. Red: positive ∆α, green:
negative ∆α.

The ∆α pattern in Fig. 6(b) shows three blobs correspond-
ing to three objects (two people and a chair) present in the
room. By finding the local maximum (minimum) of each
blob, we estimated the location of each object. Note that
while the confidence map in Fig. 6(a) shows a high likeli-
hood (“hot” area – yellow) of occupancy at the left edge of
the floor plane, the localized ridge regression algorithm has
found precise locations of 3 objects consistent with the actual
room occupancy (Fig. 5).

4. DISCUSSION AND CONCLUSION

We proposed an indoor localization system using 12 LED
light fixtures and 12 visible light sensors mounted on the ceil-
ing. Based on the light reflection model developed by Wang
et al. [20], we proposed two improved ways of locating an ob-
ject: one based on LASSO and one based on localized ridge
regression. In synthetic experiments, these two approaches
perform significantly better than localization using the con-
fidence map proposed by Wang et al. For object sizes rang-
ing in width and length from 1in to 80in, the localized ridge
regression algorithm achieves an average localization error
ranging from 0.24in to 1.39in. In a real-world experiment,
where a room is occupied by two people and a chair, the lo-
calized ridge regression algorithm was able to precisely locate
all three objects. With the use of LED fixtures and light sen-
sors, our system is cheap to build and does not violate user
privacy. Future work will consider extensions to multiple-
object localization, object size estimation and incorporation
of object height.
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