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ABSTRACT

Distributed image fusion over networks has had little coverage in
the literature, particularly considering the recent emergence of large
networks of imaging sensors such as radio telescope arrays and wire-
less self-contained node networks. We present a fully asynchronous
and distributed approach for image fusion in a general network with
partially overlapping node fields of view. We use the example of an
aerial surveillance drone network to present the advantages of our
system and show that the communication power required for per-
forming image fusion in-network is orders of magnitude lower than
transmitting all raw images back to a distant central processor, while
still achieving the same fusion performance.

Index Terms— distributed, image, fusion, sensor, networks

1. INTRODUCTION

Image fusion is a signal processing method of combining multiple
images of a common scene into a single image by exploiting the
relevant information from these images [1, 2, 3], similar to the con-
cept of diversity in multiple sensor electromagnetic communications
systems. Arrays of imaging sensors, often distributed nonuniformly,
may be used to produce varying images of a common scene that is
then ‘fused’ at a central processing unit to produce a single image of
higher fidelity than any of the constituent images [4, 5]. The imaging
techniques used at each sensor may also vary, allowing for the fusion
of data that would otherwise not be available to a single sensor. A
common example of this is the fusion of high dimensional panchro-
matic images (for geometric detail) and low dimensional multispec-
tral data (for colour information) in satellite imaging [6].

In recent years, two trends have arisen that motivate the concept
of image fusion performed in a distributed manner. Firstly, advance-
ments in wireless sensor network (WSN) technology [7, 8, 9] have
meant that small and low power sensor units equipped with micro-
processors, wireless communications systems, and imaging sensors
are becoming affordable for distributed surveillance [10, 11] or vir-
tual reality mapping of real world environments [12]. These may be
used to form adhoc WSNs with random topologies, such as aerial
surveillance drone ‘flocks’ [13] that fuse images of the terrain below
their flight paths at each time sample. In this case, sensor node en-
ergy consumption may be reduced by not requiring raw image trans-
mission from each sensor to a central collector. Local communica-
tion between close neighbours may instead be used for the image
fusion process across the network. The fused image may then be
transmitted from a node if it is tapped for output.

The second motivation for distributed image fusion is the vast
amount of data present in systems such as large radio telescope ar-
rays [14], e.g., the proposed Square Kilometre Array. The high res-
olution of the images at each radio telescope coupled with the num-
ber of such telescopes make the transmission of raw data and the

processing of fused images prohibitive in terms of communication
bandwidth, storage capacity, computation power, and energy con-
sumption [15]. Distributed fusion in this case will act to alleviate
these issues through in-network local fusion iterations rather than
transmission to, and processing at, a central collector.

While there has been significant recent progress in distributed
data fusion techniques [16, 17] there has been little work in extend-
ing traditional image fusion to a distributed setting, suitable for fully
decentralized processing. The work in [18] partially distributes the
computation of fusion filters but still requires a central collection
phase for final image estimation. For large WSNs or high volume
systems such as radio telescope arrays this still results in an expen-
sive bottleneck where image data from many sensors needs to be
routed to a fusion centre.

In the case of a WSN image fusion with many partially overlap-
ping fields of view (FOV), perhaps covering many square kilometers
of total imaging area, we encounter an obvious system limitation:
for a fully fused image to be formed at a single sensor node there
must be enough memory at said node to store, as well as enough
communication power to transmit, this large image throughout the
network. This clearly infeasible approach is also the solution that
would arise from standard distributed consensus optimization tech-
niques [19] where a common network-wide solution vector is opti-
mized for. Instead, we will discuss a method that fuses redundant
overlapping imaging areas while still maintaining the original image
dimensions at each sensor.

We propose a new processing architecture for distributed image
fusion (which will work in both the WSN and antenna array exam-
ples discussed above) based on elementwise general form consensus
[19] using the Primal-Dual Method of Multipliers (PDMM) [20, 21].
Our system will optimize the image held by each sensor node by ex-
ploiting the additional information held by neighbouring nodes, ef-
fectively performing fusion on the mutual area viewed by each pair
of nodes. Our algorithm will, in fact, exploit information from all
nodes sharing mutual image areas provided the nodes that make up
the communication path between any two nodes also share the same
mutual image area. This process will operate using asynchronous
and independent updates at each node, eliminating the need for a
synchronous update iteration clock. The result of our algorithm is
a network of nodes whose image observations may be improved via
image information fused throughout the entire network using only
local updates, without each node being required to contain a full im-
age of the full network imaging area.

Section 2 will give an overview of the proposed system; section
3 will discuss the centralized TV-L1 algorithm; section 4 will present
the derivation of our distributed PDMM fusion algorithm; section 5
will analyse the distributed PDMM algorithm; section 6 will present
simulated results of our algorithm’s performance; finally, section 7
will summarise the conclusions of the paper.
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2. SYSTEM OVERVIEW

We first outline the system we are proposing to better motivate the
distributed image fusion algorithm discussed in section 4. Through-
out the remainer of the paper we will use the example of a network of
aerial imaging drones (perhaps used for security surveillance or for
geographical mapping) where each drone node is equipped with a
single imaging sensor, a microprocessor, and electromagnetic (EM)
communications for inter-node communication. These nodes form
a time varying WSN N with cardinality N = |N |, where com-
munication is restricted to nodes connected by the edge set E with
cardinality E = |E|. That is, if two nodes k and l are within com-
munication range of each other we say that the pair (k, l) ∈ E .

Each node k records an image at time t, denoted Xk(t), of the
terrain directly below. For the sake of simplicity we assume that: the
network topology remains fixed for the duration of each image fu-
sion process and that the communication range of each sensor is low
enough that the FOV of neighbouring nodes partially overlap. Addi-
tionally, for the purposes of our algorithm presentation we will not
fuse single node image tracks over time. The advantage of multiple
images taken at a single time sample are that time varying phenom-
ena (such as vehicles for drone surveillance or oscillating pulsars for
radio astronomy) will be captured rather than filtered out of a single
image track as noise. We also therefore omit the time index t and as-
sume images are processed on the same time sample (although our
system could be easily extended to multiple time samples).

Once each node has captured the local imaging area (LIA) they
each perform an image perspective transformation, in order for all
images to share a common orthographic aerial view [5, 22]. Each
node is then able to estimate the LIA overlap between neighbouring
nodes by downsampling, transmitting, and comparing their images
[23, 24]. At this point the distributed image fusion process may be-
gin. Our distributed image fusion process is then able to exploit the
overlap between a node k and most other nodes in the network by
performing asynchronous optimization updates at each node, as will
be discussed in the following sections. At convergence the fused im-
age held by each node k is of higher fidelity than the original image,
having gained the information of overlapping images throughout the
network.

Image outputs may now be drawn from the network in a number
of different ways. Firstly, we may ‘tap’ a single node to view the
fused image held by only this node. This would be an efficient way
of drawing a high fidelity fused image of a node’s LIA. Secondly,
assuming each node is able to be tracked (e.g., via GPS) by an out-
side system operator it would be possible to determine a sparse set of
nodes that would represent the fewest node FOVs required to cover
the whole of the global imaging are (GIA). This sparse set of nodes
(potentially an order of magnitude less than the total network size)
would then each transmit the fused image of their LIA out of the
network [15].

3. CENTRALIZED TV-L1 IMAGE FUSION

Centralized image fusion has received significant attention over the
past three decades and a number of competing methods [] exist that
have been used with great success, with satellite [25] and medical
[26] image fusion being two of the most prominent current appli-
cation areas. Recently, the method of total variation (TV) denois-
ing [27, 28] (and extensions involving wavelet regularization [13])
has seen a resurgence in popularity due to its relatively simple de-
scription and solution under the framework of convex optimization.

The approach of TV-L1 denoising, in particular, has been used as a
framework for efficient image fusion algorithms [27].

Our model begins by defining our discrete GIA image domain I
as a regular grid with dimensions H ×W where I = {(p, q) | 1 ≤
p ≤ H, 1 ≤ q ≤ W} with image observation U ∈ RH×W . The
TV-L1 optimization criteria for a single image is then the combina-
tion of a total variation term of the denoised image X ∈ RH×W

and a data error term between each denoised image pixel [X]p,q and
the observed image pixel [U ]p,q , where [X]p,q represents the scalar
element of X at index (p, q). We may represent this as the uncon-
strained regularized optimization problem [13]

minimize α
∥∥∇X∥∥

1
+

∑
(p,q)∈I

∣∣[X]p,q − [U ]p,q
∣∣, (1)

where ∇ is the anisotropic discrete derivative operator, and α is a
tuneable parameter set by the implementer that determines the im-
portance of total image variation relative to observed pixel recon-
struction accuracy. When fusing N observed images that all cover
the same global set of pixels (U1, . . . , UN ) ∈ RH×W , we may ex-
tend the data error term to include these observations [13], i.e.,

minimize
∑
k∈N

α
∥∥∇X∥∥

1
+
∑
k∈N

∑
(p,q)∈I

∣∣[X]p,q − [Uk]p,q
∣∣,

(2)
where the summation over the total variation term simply scales it
by N , retaining the relative effect of the tuning parameter α. Op-
timizing this function fuses the information of multiple images of
a common global pixel set, improving the fidelity of the final im-
age. In contrast, traditional centralized methods of performing this
optimization assume that all image data is sent to a central proces-
sor for computation, resulting in expensive communication costs for
networks that cover a large area. Additionally, in high data volume
applications it may be physically impossible to store the images from
all sensors in a single location due to memory limitations .

4. DISTRIBUTED PDMM IMAGE FUSION

To overcome the problem of long distance data transmission, central
data housing, and central computation, we will distribute the image
fusion described by (2) among the N sensor nodes of the network.
We begin by presenting the most obvious method of distributing the
fusion of image data - the popular method of distributed consensus
optimization [19]. We introduce a local copy of the global optimiza-
tion variable X at each node k denoted Xk, and apply edge-wise
equality constraints between each pair of neighbouring nodes. As-
suming the network is connected (i.e. it is possible to traverse the
network from a given node to any other), these constraints will en-
sure all copies are equal and we may construct an equivalent problem
to the centralized problem (2), i.e.

minimize
∑
k∈N

αk

∥∥∇Xk

∥∥
1
+

∑
(p,q)∈I

∣∣[Xk]p,q − [Uk]p,q
∣∣

subject to [Xk]p,q = [Xl]p,q ∀(p, q) ∈ I, ∀(k, l) ∈ E ,
(3)

where αk = α ∀k ∈ N . Solving this problem using PDMM or
ADMM does not require a central fusion processor, and only relies
on local data transmission between neighbouring nodes. There are
still two important limitations to this approach: each node k is re-
quired to store a full copy of the GIA represented by the variable
Xk; and during optimization of this problem we require transmis-
sion of this full GIA variable copy. In cases where the total GIA is
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small and all sensors have a high proportion of this area in their FOV
(i.e., there is high redundancy of a relatively small imaging area),
this approach is feasible. However, for our system to be scalable to
applications involving GIAs that are orders of magnitude larger than
the LIA of any single sensor with partial overlaps in FOV, we are
unable to store and transmit these full GIA copies.

To solve the problem of GIA data storage and transmission,
we extend the consensus approach of (3) to a type of general form
consensus [21, 19] that enforces partial consensus of neighbouring
nodes through elementwise equality constraints of subsets of vari-
able components. We refer to this as general form neighbouring
consensus (GFNC). In this way, we are able to retain the original
LIA image size at each node while optimizing for the redundancy
in overlapping regions. We begin by allowing each node k to view
a new LIA image domain with independent dimensions Hk ×Wk

denoted Ik such that each LIA image domain is a subset of the GIA
image domain, i.e., Ik ⊂ I for all k. We then denote our new LIA
observation as Vk ∈ RHk×Wk and our new local optimization vari-
able as Zk ∈ RHk×Wk . We may now pose the partial consensus
optimization problem

minimize
∑
k∈N

αk

∥∥∇Zk

∥∥
1
+

∑
(p,q)∈Ik

∣∣[Zk]p,q − [Uk]p,q
∣∣

subject to [Zk]p,q = [Zl]p,q ∀(p, q) ∈ Ik ∩ Il, ∀(k, l) ∈ E ,
(4)

where we now only enforce consensus between pixels that are shared
in the LIA’s of neighbouring nodes.

To pose our new partial consensus problem in a form more read-
ily solvable by convex optimization methods we will vectorize our
variables zk = vec(Z)k and uk = vec(Uk) so that {zk,uk} ∈
RHkWk with new indices defined as gk = (Hk(q − 1) + p). We
may then write our optimization as

minimize
∑
k∈N

(
αk

∥∥Dkzk

∥∥
1
+
∥∥zk − uk

∥∥
1

)
subject to Aklzk = Alkzl ∀(k, l) ∈ E ,

(5)

where D is the derivative operator for our new vectors defined by
the relation Dvec(·) = ∇(·), and the constraint matrices Akl and
Alk may be seen as relative alignment matrices for the edge (k, l)
that contain all zeros apart from at most a single entry of 1 for each
row. These would be constructed from the alignment process carried
out prior to image fusion, and would effectively select and permute
entries in order to compare overlapping pixel areas from the images
held by nodes k and l. The equivalence of the distributed partial con-
sensus problem (5) and the centralized problem (2) will be discussed
further in section 5.

We may now use the primal-dual method of multipliers [21] to
perform distributed, independent, and asynchronous updates across
the network using the local primal and dual variable updates

ẑi+1
k = argmin

zk

[
αk

∥∥Dkzk

∥∥
1
+
∥∥zk − uk

∥∥
1
+ zT

k

( ∑
l∈Vk

AT
klλ̂

i

l|k

)
+
∑
l∈Vk

ρ

2
‖Aklzk −Alkẑ

i
l‖22
]
∀k ∈ U , (6)

λ̂
i+1

k|l = ρ(Alkẑ
i
l −Aklẑ

i+1
k )− λ̂

i

l|k ∀k ∈ V, ∀l ∈ Vk. (7)

In order to pose our problem in a form solvable by many common
optimization methods, we combine the l1 terms and expand out the

quadratic edge-wise penalty to describe the primal update step as the
optimal point z∗k of the convex problem

minimize
1

2
zT
kRkzk +wT

k zk + ‖Mkzk − qk‖1, (8)

where

Rk = ρ
∑
l∈Vk

AT
klAkl, (9)

wk =
∑
l∈Vk

(
λ̂

iT

l|kAkl − ρzT
l A

T
lkAkl

)
, (10)

Mk = [αkDk I]T , qk = [0 uk]
T , (11)

0 is the zero vector, and I is the identity matrix. We may equivalently
pose problem (8) as the quadratic program

minimize
1

2
zT
kRkzk +wT

k zk + 1Tyk

subject to yk ≥Mkzk − qk
yk ≥ −Mkzk + qk,

(12)

where the two constraints and the inner product with zk ensure that
the l1 norm of the quantity Mkxk − qk is taken at convergence.

5. EQUIVALENCE TO CENTRAL FUSION

In this section we show that our distributed algorithm is equivalent
to centrally fusing the overlapping regions of all images. We assume
that the edge-wise consensus constraints in (4) are met and addi-
tionally that any two nodes sharing a common subset of pixels are
connected by other nodes that also share this same pixel subset to
ensure that these pixels all reach consensus (analysis of the extent
of this effect is worth pursuing in future work, but our simulated ex-
perimental data suggests that the number of pixels not satisfying this
second assumption are neglible).

We define new disjoint image subsets (A1, . . . ,AM ) ∈ I
that represent overlapping areas with fixed node sets. Geomet-
rically these subsets are exactly the polygons that are formed
from the overlapping LIA borders, and will be referred to as
fixed observer-set polygons (FOSP). The union of these FOSPs
therefore cover the same area as the union of the LIAs, i.e.,
(A1 ∪ · · · ∪ AM ) = (I1 ∪ · · · ∪ IN ). Expanding out the total
variation term in equation (4) gives∑

k∈N

( ∑
(p,q)∈Ik

αk

(
|[Zk]p+1,q − [Zk]p,q|

+ |[Zk]p,q+1 − [Zk]p,q|
)
+

∑
(p,q)∈Ik

∣∣[Zk]p,q − [Uk]p,q
∣∣)

(13)

=

M∑
m=1

∑
(p,q)∈Am

∑
k∈Nm

αk

(
|[Zk]p+1,q − [Zk]p,q|

+ |[Zk]p,q+1 − [Zk]p,q|
)
+
∣∣[Zk]p,q − [Uk]p,q

∣∣ (14)

=

M∑
m=1

( ∑
k∈Nm

( ∑
(p,q)∈Am

αk

(
|Zp+1,q − Zp,q|

+ |Zp,q+1 − Zp,q|
))

+
∑

k∈Nm

∑
(p,q)∈Am

∣∣[Z]p,q − [Uk]p,q
∣∣), (15)

3328



where the node set Nm = {k|Am ∩ Ik 6= ∅} denotes the set of
all nodes contributing to FOSP m, the three summations in equa-
tion (14) denote summation over all FOSPs, summation over all pix-
els within each FOSP, and summation over all nodes contributing to
each FOSP, respectively, and the k indices previously present on the
Z variables have been omitted in equation (15) since the consensus
constraints constrain all copies of these values to equality.

By inspection we see that equation (15) is a summation of M
centralized TV-L1 fusion optimizations, each equivalent to problem
(2) carried out on an ‘overlap’ image subset. In other words, the
distributed partial consensus optimization presented in problem (4)
effectively fuses the pixels of all FOSPs, even when nodes contribut-
ing to these regions are not all within the same neighbourhood.

6. EXPERIMENTAL RESULTS

In this section we describe our simulation setup and present some
experimental results.

6.1. Experimental Setup

A random ad-hoc network was placed on a 800x800 pixel global
imaging area ( c©Institute of Geodesy and Photogrammetry, ETH
Zurich), each with a local imaging area size of 256x256 pixels and
a communication range of 100 pixels. Pixel values were in the con-
tinuous range 0 to 1 for the purpose of optimization. The received
images at each node were corrupted by zero mean independent Gaus-
sian noise with standard deviation of 0.003 as well as 0.05 density
salt and pepper noise [13]. Perspective mapping and alignment pro-
cedures were assumed to have been carried out prior to the image
fusion phase, resulting in the alignment matrices required by prob-
lem (5). The PDMM algorithm was run by randomly triggering a
node at each iteration for update for an average of 10 iterations per
node.

The peak signal-to-noise ratio (PSNR) was computed for a
512x512 area in the centre of the network so as to avoid areas on the
edge of the network with no redundancy, with only the fewest fused
node images required to cover the area used for PDMM network
output. This process was repeated for 10 random instances of the
network over a range of network node sizes. This was compared
to an image of the same area resulting from a stitched collection
of single images denoised using TV-L1 with no redundancy (single
image denoising), as well as this area fused centrally with maximum
redundancy. The tuning parameter λ was varied to find the optimal
trade-off value based on the PSNR performance.

6.2. Results

We begin with a pictorial display of the performance of the 50 node
PDMM fusion algorithm in figure 1, comparing the raw noisy GIA
and LIA, the locally (single image) denoised GIA and LIA, and the
PDMM fused GIA and LIA. The local denoising does well to remove
most noise at the expense of fine details, whereas the redundancy
exploited by the PDMM fusion process allows fine details to be re-
tained while reducing the noise present. The effect of noise on the
PDMM fused GIA is more prevalent at the outer edges of the GIA.
This is caused by a lack of redundancy since these areas are only
viewable from one or two nodes, resulting in performance similar to
the locally denoised pixels of these outer areas.

Figure 2 shows the statistical performance of the algorithm av-
eraged over 10 instances with cross-validated tuning parameter. The
PSNR of the PDMM algorithm, the central fusion process, and local

Fig. 1. Top row from left: noisy GIA; locally denoised GIA; PDMM
denoised GIA. Bottom row from left: noisy LIA; locally denoised
LIA; PDMM denoised LIA.

independent denoising are compared as a function of average nodes
per pixel and contrasted with the energy consumption ([29] using
free space parameters) of these systems with a central collector base
station 1 km away. We see that the performance of our distributed
algorithm is roughly equal to that of the central fusion process while
consuming significantly less energy since redundant information is
fused within the network prior to transmission to the base station,
rather than each node transmitting a raw image observation.
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Fig. 2. PSNR and communication power versus nodes per pixel.

7. CONCLUSION

A fully asynchronous distributed image fusion system was devel-
oped for a general network of imaging sensors with partially over-
lapping FOVs. We show that performing image fusion in this manner
is equivalent to performing centralized fusion over each overlapping
FOV, even when non-neighbouring nodes view common overlaps.
Simulated results show that we achieve roughly equal performance
to the centralized case while conserving considerable transmission
energy.
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