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ABSTRACT

Estimation of an unknown deterministic vector from quan-

tized sensor data is considered in the presence of spoofing and

man-in-the-middle attacks. First, asymptotically optimum

processing, which identifies and categorizes the attacked

sensors into different groups according to distinct types of

attacks, is outlined in the face of man-in-the-middle attacks.

Necessary and sufficient conditions are provided under which

utilizing the attacked sensor data will lead to better estima-

tion performance when compared to approaches where the

attacked sensors are ignored. Next, necessary and sufficient

conditions are provided under which spoofing attacks provide

a guaranteed attack performance in terms of the Cramer-Rao

Bound regardless of the processing the estimation system em-

ploys. It is shown that it is always possible to construct such a

highly desirable attack by properly employing an attack vec-

tor parameter having a sufficiently large dimension relative

to the number of quantization levels employed, which was

not observed previously. For unattacked quantized estimation

systems, a general limitation on the dimension of a vector

parameter which can be accurately estimated is uncovered.

Index Terms— Distributed parameter estimation, man-

in-the-middle attack, spoofing attack, Cramer-Rao Bound,

sensor network.

1. INTRODUCTION

The emerging revolution impacting the topics of sensor net-

working, the internet of things (IoT), enhanced data moni-
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toring and data processing for enhanced situation awareness

continues to magnify the impact that sensor data can have

in our daily lives. Applications such as disaster prediction,

security, smart cities, enhanced building operation for opti-

mized energy usage, health monitoring, monitoring for as-

sisted living, and smart transportation systems, among others,

promise tremendous positive impact on our daily lives [1].

While the internet has been available for many years, the in-

tegration of sensing technology into the internet is still very

immature and brings new problems that have not yet been

addressed. The vision of inexpensive sensor nodes is being

realized. For example powerful radar technology, including

MIMO radar technology, is currently being incorporated in

future products by virtually every car manufacturer. They are

designing very inexpensive radar systems based on mass pro-

duced integrated circuits which will encourage the incorpo-

ration of radars in many commercial products and ultimately

mass adoption. The products being offered through the in-

ternet of things roll out will accelerate this phenomenon and

encourage similar inexpensive sensor system development of

other currently expensive sensors. However, with all of this

comes the increased risk of cyber attacks on theses systems.

The topic of cyber attacks on sensor systems has received

much less attention than the topic of cyber attacks on other

systems, but the increasing adoption of sensor and internet of

things networks makes this a very important issue. We have

already heard rumors of attacks on automotive radars and re-

lated GPS systems. Such attacks could lead to loss of human

lives so these attacks are a very serious threat. In many sensor

networking and internet of things applications, it is desired to

estimate some quantity, possibly the position or velocity of

a human. Here we focus on systems performing estimations

and study the impact and mitigation of intruders altering the

data entering or leaving the sensors. In fact, if the intruders

modify the data entering a sensor, we call it a spoofing attack.

If the intruders modify the data leaving a sensor node, we call

it a man-in-the middle attack. Our focus here is somewhat on

large sensor networks that seem to be coming and may be the

most vulnerable, although lessons for smaller systems are also
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uncovered. Typically, large sensor networks are comprised

of low-cost and spatially distributed sensor nodes with lim-

ited battery power and low computing capacity, which makes

them particularly vulnerable to cyberattacks by adversaries.

This has led to great interest in studying the vulnerability

of sensor networks in various applications and from differ-

ent perspectives, see [2–9] and the references therein. Due

to the dominance of digital technology, a great deal of at-

tention has focused on parameter estimation using quantized

data [10–14].

2. MAN-IN-THE-MIDDLE ATTACKS

Consider a set of N distributed sensors, each making K ob-

servations of a deterministic scalar parameter θ corrupted by

additive noise. At the j-th sensor, the observation at the k-th

time instant is described by

xjk = θ + njk, ∀j = 1, 2, ..., N, ∀k = 1, 2, ...,K, (1)

where njk denotes the additive noise sample with common

zero-mean probability density function (pdf) f(njk) and

{njk} is an independent and identically distributed sequence.

Due to the stringent energy and bandwidth limitations in re-

alistic sensor networks, each sensor is restricted to transmit

a single bit per observation xjk to the fusion center (FC). In

this section, to simplify the problem in terms of both imple-

mentation and analysis, all xjk are quantized to ujk by using

threshold quantizers of the same design

ujk = 1 {xjk ∈ (τ,∞)} . (2)

We assume that the quantizer design and the threshold τ is

known to the FC.

Let there be P distinct types of malicious attacks, where

each attack will modify some sensors’ observations. Let Ap

denote the set of sensors subjected to the p-th attack. Let

ũjk represent the after-attack quantized observation which is

a modified version of ujk. The statistical description of the

p-th attack can be described by a probability transition matrix

Ψp,

Ψp
∆
=

[

ψp,0 1− ψp,1

1− ψp,0 ψp,1

]

, (3)

where ψp,0
∆
= Pr (ũjk = 0 |ujk = 0) and ψp,1

∆
=

Pr (ũjk = 1 |ujk = 1) determine the modification probabil-

ities. Due to the p-th attack, the after-attack probability

mass function (pmf) of the observations can be related to the

before-attack pmf using

[

1− p̃ (Ψp, θ)
p̃ (Ψp, θ)

]

∆
=

[

Pr (ũjk = 0 |θ )
Pr (ũjk = 1 |θ )

]

= Ψp

[

Pr (ujk = 0 |θ )
Pr (ujk = 1 |θ )

]

(4)

For the sake of expressing the after-attack pmfs of observa-

tions in a uniform form for both attacked and unattacked sen-

sors, the set A0 of unattacked sensors are considered “under

attack” associated with probability transition matrix Ψ0 = I.

The following assumption is made through this paper.

Assumption 1

1. Over the estimation time interval and for all p, the p-

th attack is statistically described as in (4) for all the

sensors in the set Ap. The set Ap and Ψp are both un-

known to the FC (except Ψ0), and for sufficiently large

N the number of sensors in Ap, |Ap|, is a fixed per-

centage Pp of the total number N of sensors in the sen-

sor network. Such an assumption is required so that as

N → ∞ the effect of an attack will not shrink to zero

(Ap becoming a set of measure zero). Moreover, we as-

sume that the group of unattacked sensors is the largest

group and P0 > Pp +∆0 for all p ≥ 1 where ∆0 is a

positive constant. Further the sets A0,A1, . . . ,AP are

disjoint so that

Ap ∩ Ap′ = ∅ if p 6= p′. (5)

2. Significant Attacks. In order to give rise to sufficient

impact on the statistical characterization of the out-

puts from attacked sensors, every attacker is required

to guarantee a minimum distortion dimpact on p̃ (Ψ0, θ)
and tamper with at least ∆ percent of sensors so that

the following relations should be satisfied

|p̃ (Ψp, θ)− p̃ (Ψ0, θ)| ≥ dimpact, ∀p = 1, 2, ..., P,
(6)

Pp ≥ ∆ > 0, ∀p = 1, 2, ..., P. (7)

3. Various Attacks. The changes caused by two distinct

types of attacks are considerably different, otherwise

these two types of attacks can be treated as identical.

To this end, we assume that

|p̃ (Ψl, θ)− p̃ (Ψm, θ)| ≥ ddiff, ∀l 6= m. (8)

4. Non-trivial Attacks. If the FC perceives some sensor

produces a constant value of 0 or 1, then the FC can

easily recognize the sensor is under attack. For this

reason, in order to reduce the probability of being de-

tected, we assume that the adversaries ensure

p̃ (Ψp, θ) 6= 0 or 1, ∀p ≥ 1. (9)

It is worth mentioning that the adversary model assumed

in (4) can change the after-attack pmf to have any desired

valid values satisfying (6), (8), and (9) through proper choice

of the two attack parameters ψp,0 and ψp,1. In this sense, it is

a fairly general adversary model.
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2.1. Identification and Categorization of Attacked Sen-

sors

The following theorem gives our main results on the identifi-

cation and categorization of the attacked sensors.

Theorem 1 Under Assumption 1, for any N as K → ∞, the

FC can always identify from the observations, without further

knowledge, a P0 percentage group of sensors which contains

zero percent attacked sensors. Similarly as K → ∞, the

FC is also able to identify P other groups of sensors, which

respectively make up {Pp}
P
p=1 percent of all sensors, such

that for p = 1, 2, ..., P , group p contains zero percent sensors

not experiencing attack p.

On the other hand, assume each sensor observes a finite

number K of time samples such that

K ≥ −
8 ln 2

γ∗ min {∆∆0,∆2}
+ 1, (10)

where γ∗ is a constant defined in [6]. Under Assumption 1,

as N → ∞, the FC can determine P . Moreover, for the set

of sensors Ap which are under the p-th attack ∀p ≥ 0, the

FC can identify a corresponding group of sensors Ãp with

P̃p
∆
= |Ãp|/N , P∗

p

∆
= |(Ãp\Ap) ∪ (Ap\Ãp)|/N , and

δ
∆
= −

4 ln 2

∆(K − 1)γ∗
(11)

which satisfy

0 ≤ |P̃p − Pp| ≤ P∗
p < δ. (12)

In [6], it is shown that the quantization approach previ-

ously discussed leads to a singular Fisher Information Matrix

(FIM) such that θ can not be estimated with increasing accu-

racy with larger NK. However, by splitting the observations

into two or more groups at each sensor and employing differ-

ent thresholds for each group, the FIM is always nonsingular.

In the following theorem, we provide necessary and sufficient

conditions under which the CRB performance of estimating θ
can be improved by employing observations from an attacked

sensor.

Theorem 2 The CRB for θ can be improved by utilizing the

observations from the set of attacked sensors in our proposed

fashion, if and only if the FIM for estimating θ based on the

observations under the p-th attack has rank 3 for some p. Oth-

erwise, there is no CRB improvement, but also no loss in per-

formance, from utilizing the attacked observations.

In [7] we provide a closed-form expression describing the in-

crease in CRB obtained from using the data from attacked

sensors. All the analysis presented can be extended to nonbi-

nary and general estimation problems [7].

3. SPOOFING ATTACKS

Let V ⊂ SN denote the set of sensors undergoing spoofing

attacks. The after-attack version x̃jk of xjk is an independent

sequence over j, k such that1

x̃jk ∼

{

fjk (x̃jk |θ ) , if j ∈ U
gjk

(

x̃jk
∣

∣θ, τ (p)
)

, if j ∈ V and j ∈ Ap
,

(13)

where if j ∈ V and j ∈ Ap, then the after-attack pdf

gjk(xjk|θ, τ
(p)) is parameterized by the desired vector pa-

rameter θ and the attack vector parameter τ (p). To conform

to previous work, the functional forms of the attacks, thus

{fjk} and {gjk}, are assumed known to the attacked system

but the desired and attack vector parameters are not.

We generalize the quantization model to allow nonbinary

quantization. At the j-th sensor, each after-attack measure-

ment x̃jk is quantized to ũjk by using a Rj-level quantizer

with quantization regions {I
(r)
j }

Rj

r=1, that is,

ũjk =

Rj
∑

r=1

r1
{

x̃jk ∈ I
(r)
j

}

, (14)

where 1{·} is the indicator function. Let Θ denote a vec-

tor containing the unknown vector parameter θ along with all

the unknown attack vector parameters which parameterize the

spoofing attacks in the sensor network

Θ
∆
=

[

θ
T ,

(

τ
(1)

)T

, ...,
(

τ
(P )

)T
]T

. (15)

Now we define a highly desirable attack.

Definition 1 Consider attacks employing {fjk(xjk|θ)} and

{gjk(x̃jk|θ, τ
(p))}. The optimal guaranteed degradation

spoofing attack (OGDSA) maximizes the degradation of the

Cramer-Rao Bound (CRB) for the vector parameter of inter-

est at the FC when the attacked sensors are well identified and

categorized according to distinct types of spoofing attacks by

the FC. The CRB for the case where the attacked sensors are

well identified and categorized provides a lower bound on the

CRB for any case, including cases with unidentified and un-

categorized attacked sensors, thus providing guaranteed suf-

ficiently undesirable performance and justifying the name.

One class of attacks that are OGDSA are called inestimable

spoofing attacks, defined next and further illuminated by the

subsequent theorem.

Definition 2 (Inestimable spoofing attack (ISA)) The p-th

spoofing attack is referred to as an ISA if the corresponding

FIM for estimating τ
(p) is singular.

1The notations x̃jk and ũjk denote the after-attack analog measurements

and the corresponding quantized measurements.
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Such an attack can result from a sufficiently powerful attack

relative to the number of quantification symbols employed by

the quantizers as stated in the next theorem.

Theorem 3 For the p-th spoofing attack, if the dimension Dp

of the attack parameter τ (p) satisfies

Dp >
∑

j∈Ap

K (Rj − 1), (16)

then the FIM for estimating τ
(p) is singular, and furthermore,

the FIM for estimating Θ is also singular.

The only other possible class of OGDSAs are called optimal

estimable spoofing attacks (OESAs). The estimable spoofing

attacks (ESAs) are defined next.

Definition 3 (Estimable spoofing attack) The p-th spoofing

attack is said to be estimable if the corresponding FIM for

estimating τ
(p) is nonsingular.

Theorem 4 In the presence of ESAs, the CRB for θ is

bounded above as per

CRBESA (θ)
∆
=

[

J
−1
Θ

]

1:Dθ

� J
−1
A0
. (17)

where J denotes the relevant FIM. If the p-th spoofing at-

tack is an ESA and achieves the equality in (17), then the p-th

spoofing attack is an OESA, and hence an OGSA.

In [15] we give necessary and sufficient conditions for an op-

timal estimable spoofing attack in terms of a relationship be-

tween the subspaces spanned by the columns of certain ma-

trices from the singular value decompositions of the FIMs for

estimating θ and τ
(p) using data under the p-th attack. It is

also shown [15] that a generalization of an additive shift in θ,

thus the attack replaces θ by θ + τ
(p) is always an OESA.

4. IMPLICATIONS FOR UNATTACKED SYSTEMS

From Theorem 3, we can derive the following theorem de-

scribing a fundamental limitation on quantized estimation

systems not under attack.

Theorem 5 Let Dθ be the dimension of a vector parame-

ter we want to estimate from L independent observations

quantized using Q distinct quantizer designs with Rj , j =
1, 2 . . . , Q symbols. Assume the j-th group of observations,

all facing an identical quantizer, are generated from Mj dif-

ferent pdfs. The FIM is singular (accuracy of estimations does

not increase with more observations) if

Dθ >

Q
∑

j=1

Mj (Rj − 1), (18)

Generalized results can be found in [16].

5. CONCLUSIONS

Spoofing and man-in-the-middle attacks are studied for sys-

tems performing estimation of an unknown deterministic vec-

tor from quantized sensor data. For man-in-the-middle at-

tacks, asymptotically optimum processing which identifies

and categorizes the attacked sensors into different groups is

described and necessary and sufficient conditions are pro-

vided under which utilizing the attacked sensor data will lead

to better estimation performance. For spoofing attacks, nec-

essary and sufficient conditions are provided under which an

attack performance in terms of the Cramer-Rao Bound (CRB)

is guaranteed regardless of the processing the estimation sys-

tem employs. Theses conditions imply that, for any such at-

tack when the attacked sensors can be perfectly identified by

the estimation system, either the Fisher Information Matrix

(FIM) for jointly estimating the desired and attack parame-

ters is singular or the attacked system is unable to improve

the CRB for the desired vector parameter through this joint

estimation even though the joint FIM is nonsingular. If the

attacker knows the number of quantization symbols and the

number of different statistical models at each sensor, it is al-

ways possible to construct such a highly desirable attack by

properly employing an attack vector parameter having a suf-

ficiently large dimension relative to the number of quantiza-

tion levels employed. For unattacked quantized estimation

systems, a general limitation on the dimension of a vector pa-

rameter which can be accurately estimated is uncovered.
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