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ABSTRACT
In this paper, we propose a solution to the sensor management
problem over multiple time instances that balances the accu-
racy of the sensor network estimation with its utilization. We
show how this problem reduces to a binary optimization prob-
lem for which we give a convex relaxation based solution that
involves the minimization of a regularized `∞ reweighted `1
norm. We show experimentally the behavior of the proposed
algorithm and compare it with previous methods from the lit-
erature.

Index Terms— sensor management, convex optimiza-
tion, binary optimization.

1. INTRODUCTION

The sensor management problem [1], at least in the case of a
single time instance, has been extensively studied in the past.
The problem is hard because deciding which sensors to select
results is a binary optimization problem, that is NP-hard to
solve in general. We currently identify three well-established
approaches to deal with this problem. The first one is to ap-
proximate the combinatorial optimization problem by its con-
vex relaxation [2]. This heuristic approach [3] proves to work
very well in numerical experiments and to be very close to a
bound on the best possible performance. Another approach,
called SparSenSe [4], solves an `1 optimization problem to
decide the minimum number of sensors to be activated such
that an appropriately defined mean squared error (MSE) is
below a given threshold. Finally, FrameSense [5] is a greedy
approach that proposes to minimize the frame potential of the
sensing matrix since it has been shown that this also mini-
mizes the MSE of the estimation process.

In this paper, we study the problem of activating the min-
imum number of sensors from a total of m available sensors
over T time instances such that required parameters are es-
timated with at least a minimum given accuracy at each time
interval while we also balance the overall energy consumption
of the sensor network. Our goal is to minimize the number of
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active sensors and to balance the sensor network utilization
by discouraging the selection of the same subset of sensor at
each time step. The problem is interesting from a practical
perspective as it has seen many applications in estimation [3],
control theory [6] and wireless networks [7] for example.

Since the solution to the sensor selection problem is bi-
nary, sparsity promoting techniques [8, 9, 10] have also been
applied successfully to the problem. Other approaches, like
[11] uses a genetic algorithm to solve the sensor placement
problem given a similar problem setup to that of [3] while [12,
13] give sub-optimal local optimization techniques and [14]
proposed an exact optimization via branch-and-bound meth-
ods. While most scheduling algorithms assume that measure-
ments are taken in a centralized manner, decentralized meth-
ods have also been proposed for the sensor management prob-
lem [4, 15].

Most previous solutions deal with the sensor management
problem in a single time instance. Their solutions can be triv-
ially extended to multiple time instances just by making the
same selection at each step. This solution is unsatisfactory in
most cases since it polarizes the energy consumption of the
sensor network. The approaches in [16, 17, 18] were among
the first to consider balancing the utilization of the sensor net-
work by adding reweighted `1 [17] or an `2 [18] penalty to
their optimization problem that encourages selection of dif-
ferent sensors in different time instances.

In this work, we use an `∞ regularization penalty to the
optimization problem to balance the use of the sensors in the
network. This natural penalty effectively translates into re-
ducing the overall usage of any particular sensor in the net-
work. As such, multiple selections of the same sensors are
unlikely, unless absolutely necessary for estimation accuracy.
This is the first paper where a combined `1/`∞ optimization
problem is proposed for the sensor selection problem over
multiple time instances.

2. THE SENSOR MANAGEMENT PROBLEM

In this paper, we follow, and extend, the classical setup from
[3]. We assume that we want to estimate an unknown vector
x ∈ Rn from a set of m linear measurements given by A ∈
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Rm×n with additive white Gaussian noise n ∼ N (0, σ2I)
as y = Ax + n. The maximum-likelihood estimate is x̂ =
(ATA)−1ATy with the estimation error e = (x− x̂) having
zero mean and covariance Σ = σ2

(
ATA

)−1
. As discussed

in [3], the logarithm of the volume of the confidence ellipsoid
defined by Σ gives a quantitative measure of the quality of
themmeasurements, i.e., how informative they are about any
target x. Therefore, the convex sensor selection problem is
defined in [3] as the problem of selecting a subset of k ≥ n
sensors, where k is fixed, out of the m available such that

maximize
z; z∈[0,1]m, 1T z=k

log det
(
AT diag(z)A

)
. (1)

where zi encodes if the ith sensor is activated or not. After
solving (1) the resulting solution z might not be binary, in
which case a further local search is applied to produce the
final binary solution z. Notice that this solution holds for a
single time instance. We next extend the problem to multiple
time instances and propose a solution for this new problem
that also balances the use of the sensors.

3. THE PROPOSED METHOD

In this paper, we deal with the problem of selecting sensors
out of a network of m total sensors over T time instances. At
each time instant we guarantee that a minimum level of ac-
curacy is met and overall the network usage is balanced. We
propose a `∞ regularized reweighted `1 optimization proce-
dure to deal with this problem.

We start by introducing the matrix Z =
[
z1 . . . zT

]
∈

{0, 1}m×T , where each zt ∈ {0, 1}m is a binary variable that
decides which sensors out of the m available are selected at
time instant twith t = 1, . . . , T . In order to balance the usage
of the sensors (and avoid the consecutive selection of the same
subset of sensors) we introduce the utilization factor

u =

T∑
t=1

zt ∈ {0, 1, . . . , T}m×1, (2)

which is just the sum over the selection variables zt.
Ideally, for a fixed regularization parameter λ ≥ 0, we

would like to solve exactly the optimization problem

minimize
Z∈{0,1}m×T

T∑
t=1

‖zt‖0 + λ‖u‖∞

subject to log det(AT diag(zt)A) ≥ µt, t = 1, . . . , T,
(3)

where ‖z‖0 is the `0 pseudo-norm, i.e., the number of non-
zero entries, and ‖z‖∞ = max

1≤i≤m
|zi| is the `∞ norm. Because

all the entries of Z are positive, ‖u‖∞ can be viewed as the
`∞ norm induced on Rm and RT , also called the max-row-
sum norm, given by ‖Z‖∞ = max

1≤i≤m

∑T
j=1 |Zij |.

Algorithm 1 – Sensor scheduling by `1/`∞ minimization.
Input: The design matrix with m sensors A ∈ Rm×n, the
regularization parameter λ > 0, the number of time instances
T and the minimum accuracy at each time instant µt.
Output: The scheduling table Z ∈ {0, 1}m×T for the sensor
activations at each time step.

Initialization:
1. Set initial weights wt = 1, t = 1, . . . , T and initial

all-zero solution Zprev = 0.
2. Initialize sets N = ∅ and K = ∅.

Iterations:
1. Solve (8) to obtain current estimate Z.
2. Update the sets N = {n | Z(n) ≤ ε} and K =

{k | Z(k) ≥ 1− ε}.
3. If iterative process has converged, i.e., ‖Z −

Zprev‖2F ≤ ε, then K = K ∪ {argmax
k

Z(k), k /∈ K}.

4. If solution is binary, i.e., |N |+ |K| = mT , then stop.
5. Update weights according to (6) and store current

solution in Zprev.

According to the objective function of (3), for a given time
instance we encourage the selection of only a subset of the
sensors while overall we discourage the selection of the same
sensors in all time instances (except if the constraints are not
otherwise met). The constraints guarantee that in all time in-
stances we get a minimum level of accuracy µt from the mea-
surements taken.

An important question is how to choose the levels µt.
The objective function of (1) is maximized when all measure-
ments are used, i.e., z = 1. To see this, assume k ≥ n mea-
surements have been already selected by the activation vector
z in X = AT diag(z)A and a new measurement aj has been
chosen (i.e., set zj = 1), by the matrix determinant lemma
we have that det(X + aja

T
j ) = (1 + aT

j X−1aj) det(X) >
det(X), where the last inequality is true since X is full rank
and positive definite. We therefore choose µt to be fractions
of this maximum level

µt = ρt log det(A
T diag(1)A), ρt ∈ [0, 1). (4)

We consider that allowing the user to select the variables µt

is a realistic scenario. The user needs to input the desired
accuracy of the measurements, at least as a measure of the
maximum accuracy possible with the full given sensor net-
work. Ultimately, this choice decides the number of sensors
selected across the T time instances.

Still, the optimization problem (3) is not convex. We pro-
ceed now to relax it to a convex expression and propose an
iterative way to solve it. First, the binary constraint is relaxed
to Z ∈ [0, 1]m×T and the `0 norm is replaced by the convex `1
norm ‖z‖1 =

∑m
i=1 |zi|. Notice that ‖z‖1 = 1T z because all

entries of z are positive. For the same reason a simplification
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also occurs for the `∞ norm that is now replaced by a maxi-
mum operation, i.e., ‖z‖∞ = max

1≤i≤m
zi. Furthermore, we will

also solve the new optimization problem in an iterative fash-
ion to ensure that the final result Z is binary. Therefore, we
choose to follow the iterative reweighted `1 [19, 20] approach
for improved results. Classically, this means replacing the
‖z‖1 objective with ‖Wz‖1 where W is a diagonal matrix
containing the weights. In our case, this objective simplifies
to wT

t zt. The choice of the weight vectors wt ∈ Rm is dis-
cussed later. Finally, the convex problem we reach is

minimize
Z∈[0,1]m×T

T∑
t=1

wT
t zt + λmax(u)

subject to log det(AT diag(zt)A) ≥ µt, t = 1, . . . , T.
(5)

We will deal with this problem in an iterative fashion, updat-
ing the weights until convergence. The optimization problem
above is solved via the CVX generic solver [21]. Details of
the procedure and modifications to (5) are discussed now.

In solving (5), the choice of the weights wt is very im-
portant. Initially, the weights are set to wt = 1 (assuming
no prior information about the solution is available, all acti-
vations are equally likely to be zero or one). After solving
(5) for the first time we obtain a solution Z and the weights
are set inversely proportional to the magnitude of the entries,
i.e., a well known choice[19] is wt = 1 � (|zt| + ε), where
� is the elementwise division operator and ε is a small posi-
tive constant. In this paper, we choose to update the weights
in a different manner, taking advantage of the fact that ulti-
mately the solution needs to be binary. We propose to use
wt = 1− zt

‖zt‖∞ , and since with high probability at least one
entry in zt will achieve the maximum value of one we can
further simplify the weights to

wt = 1− zt. (6)

To motivate our choice for wt let us analyze what happens
after solving (5) for a certain number of iterations and the
optimization process converges. The stationary point of the
first term in the objective function is

wT
t zt = (1− zt)

T zt = 1T zt − zTt zt = kt − ‖zt‖22, (7)

where kt is the number of sensors active at time instant t.
Seen this way, our heuristic is a method for `2 norm maxi-
mization. This is a problem known to be hard [22] but very
useful in combinatorial optimization since the `2 objective is
maximized exactly when the solution zt is binary. Also, no-
tice that as the entries of Z are pushed to binary values the
whole objective function in (5) reduces to λmax(u). We also
introduce an additional constraint that every sensor needs to
be selected at least once over all time instances, i.e., u ≥ 1.

Unfortunately, a last technical difficulty of our proposed
method is that, no matter the choice of the weights, we can-
not guarantee that Z will converge to a binary solution. Pre-
vious works [3, 18] apply a local search procedure after the
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Fig. 1: The total number of sensor activations over all time
instances scheduled by Algorithm 1 for different values of
the regularization parameter λ. We vary the accuracy of the
estimation as a fraction of the best accuracy achievable by the
full sensor network (4) with m = 100 and n = 30. Results
are averaged over 50 realizations of the sensor network.

main optimization has converged to finally drive the solution
to have binary entries. In this paper, we take a slightly differ-
ent approach. During the entire iterative process we will keep
track of two sets N and K, containing the coordinates of the
zero and the one entries, respectively, in Z. Practically, we
will test if entries are below a threshold ε or above a thresh-
old 1 − ε, respectively. All entries indexed in this set are no
longer considered to be variables in the optimization process
but to have become fixed, final. This assumption is realistic
since entries that are very close to zero or one have a very
low probability of switching their values due to the weights
put in place by wt. After the iterative process converges, the
entry of Z with the highest value that is not indexed in K is
added to this set, i.e., it is set to one, and the optimization
process continues with the other variables still to be decided.
The whole procedure stops when every entry of Z is either in
N or in K, i.e., |N |+ |K| = mT . Notice that using these two
sets we also reduce the size of the optimization problems that
are solved and thus we speed-up solving (5) as the algorithm
progresses.

Therefore, the final optimization problem we solve is

minimize
Z∈[0,1]m×T

T∑
t=1

wT
t zt + λmax(u)

subject to u ≥ 1, Z(n) = 0,∀n ∈ N , Z(k) = 1,∀k ∈ K
log det(AT diag(zt)A) ≥ µt, t = 1, . . . , T.

(8)
The full proposed procedure is described in Algorithm 1.

4. EXPERIMENTAL RESULTS

In this section, we give numerical results that show sensor se-
lections calculated by our proposed method, Algorithm 1. We
follow a setup similar to the one in [3]. The measurement ma-
trix A is chosen randomly and independently from a N (0, 1)
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Fig. 2: The maximum number of activations of any single
sensor. Experimental setup similar to Fig. 1.
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Fig. 3: We compare our `∞ regularization approach to previ-
ously proposed regularization based on the `2 norm. We also
show the effects of `1 regularization. Experimental setup is
λ = 10, ρ = 0.6, m = 30 and n = 10.

distribution. We evaluate the sensor management solution
over T = 10 time instances for different values of µt. We
ask for the same accuracy of the estimation at each time in-
stant and therefore we fix µt = µ = ρ log det(AT diag(1)A).

In Figs. 1 and 2 we show how sensor activations are
scheduled by the proposed Algorithm 1. We consider an ex-
ample where n = 30 parameters are estimated by a network
of m = 100 sensors. Fig. 1 shows the total number of sen-
sor activations over all time instances as a function of the
minimum required estimation accuracy given by ρ. Notice
that increasing the regularization parameter λ also increases
the total number of active sensors in the network. On the
other hand, Figure 2 shows the upside of a large value for
the regularization parameter: a single sensor is selected fewer
times over all time instances balancing therefore energy con-
sumption and network utilization. This is the trade-off that
an `1/`∞ objective function of (8) outlines. Both the total
number of sensor activations and the maximum utilization of
any sensor increase as the accuracy of estimation ρ increases.
Demanding high estimation accuracy (values ρ ≥ 0.7) leads
to situations where inevitably at least one sensor is selected in
almost all time instances.

In Fig. 3 we show the sensor selection frequency for one
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Fig. 4: Weighted versus un-weighted `∞ regularization. Ex-
perimental setup the same as Fig. 3.

run of Algorithm 1. For simplicity of exposition we now con-
sider an example where n = 10 parameters are estimated by a
network ofm = 30 sensors. We also test against the approach
in [18] that uses a `2 penalty to regularize the problem. Note
that [18] has a different experimental setup but we can still use
the regularization idea and apply it in our scenario. The `∞
proposed penalty leads to a situation where each sensor is se-
lected on average 3.76 times with standard deviation 0.9352
while in the `2 approach selects more sensors with average
3.83 and standard deviation 1.42.

Our framework also allows an easy way to encode prior
information about the energy constraints of any sensor. As-
sume for example that there is a subset of sensors in the net-
work that have a virtually unlimited power supply or that
some sensors have more power available than others. We can
alter the objective function of (8) to

T∑
t=1

wT
t zt + λmax(Wu), (9)

where the diagonal matrix W encodes information about the
power supplies of the sensors. For example, wii = 0 encodes
that sensor i has a large power supply and therefore there is
no penalty of selecting it multiple times. Fig. 4 compares
(9) where W = I with (9) where now wii = 1 except for
w4,4 = w20,20 = 2 and w17,17 = w26,26 = 0. Notice that
sensors 17 and 26 are used in all time instances while the use
of sensors 4 and 20 is reduced in the weighted `∞ approach.

5. CONCLUSIONS

In this paper, we propose a novel algorithm based on `∞ reg-
ularized reweighted `1 optimization to build activation sched-
ules for a network of sensors so that we are able to estimate
parameters with a given accuracy while we also balance the
energy utilization of the network. We show the flexibility
of our method when it comes to incorporating power con-
sumption information into the sensor management problem
and show its superiority to previous methods in the literature
that proposed different regularization.
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