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ABSTRACT

Based on the theory of linear matrix inequalities (LMI), this
paper proposes an event-based distributed consensus algo-
rithm for linear multi-agent/sensor networks that are hetero-
geneous. The proposed scheme is event-based in the sense
that each agent transmits its information to its neighbouring
nodes only under predefined circumstances. Ensuring the sta-
bility of the closed-loop system, the Lyapunov theorem is uti-
lized to compute design parameters (heterogeneous controller
gains and transmission threshold) used in the proposed con-
sensus algorithm. Numerical simulations demonstrate a per-
formance gain in the convergence time and a reduction in the
number of data transmissions with the proposed approach.

Index Terms— Consensus algorithms, Event-based
transmission, Distributed agent/sensor networks, Linear Ma-
trix Inequalities (LMIs).

1. INTRODUCTION

As a fundamental cooperative behaviour in multi-agent/sensor
networks, consensus has recently attracted significant atten-
tion. The consensus problem in which agents constantly
transmit their information has been widely studied in several
applications of practical importance [1–4]. In order to de-
crease the number of transmissions in the distributed scheme
and extend the life of the nodes, incorporation of an efficient
event-triggering mechanism is of great interest [5–10]. We
note that most related works deal primarily with homoge-
neous agents/sensors, i.e., all agents have identical dynamics;
an assumption which is often contradicted in practice [11].
Moreover, in most existing works, in order to achieve consen-
sus, a common control gain is typically designed and shared
among all agents [12, 13]. Such a design approach is not
considered to be entirely distributed. In a fully distributed
structure, each agent should be able to choose its own con-
troller gain, according to its own dynamics and connectivity
within the communication network. In addition, such strate-
gies are not optimal for heterogeneous multi-agent/sensor
systems. Ignoring heterogeneous control design often leads to
unstable network performance, as discussed in Reference [14].

Among different strategies developed to deal with con-
sensus, in this paper, we convert event-triggered consensus
problem to an equivalent stability problem of a transformed
version of the original system. The main reason for using this
approach is to utilize the well-developed Lyapunov method, a
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powerful stability maintenance technique that also provides
a variety of performance indices [15]. We are interested in
synthesizing heterogeneous controller gains. The transformed
system needs to conserve all system parameters. The trans-
formations suggested by [13] and [16] are incapable of meeting
these challenges.

We used linear matrix inequalities (LMI) to solve the
transformed stability problem and design the consensus pa-
rameters, including the individual controller gains and a com-
mon transmission threshold used at each consensus iteration
to determine if an agent communicates to its neighbours or
not. As a powerful design method, LMI optimization guar-
antees system stability for desired control and communica-
tion specifications through convex optimization. For a multi-
objective problem (such as a distributed event-based consen-
sus network with heterogeneous agents as is being considered
in this paper), an analytical solution to compute the design
parameters is difficult (if not impossible) to derive. Analytical
solutions proposed in the literature need strong assumptions
on agent dynamics [21], control gain design [29], or/and net-
work topology [22]. Formulating the problem within an LMI
framework is a practically feasible solution to pursue [27].
Note that deriving optimization matrix inequalities in a linear
structure is a non-trivial effort and some suggested consensus
approaches result in bilinear matrix inequalities (BMI) that
are even more difficult to solve [28,30].

Motivated by the aforementioned discussions, in this
paper, we investigate the problem of control design for
event-based consensus in heterogeneous multi-agent/sensor
systems. The proposed event-based consensus strategy offers
these practical features: (i) Asynchronous triggering instants,
i.e., each agent independently decides on its own triggering
time; (ii) Guaranteed minimum number of data transmis-
sions for a triggering function; (iii) Reliance of the control
protocol on the most recently received data. Within the LMI
framework, the H∞ technique is used to reduce the impact
of external disturbance on the closed-loop performance.

The remaining paper is organized as follows: Section 2
introduces the notation. In Section 3, we formulate the event-
based consensus problem. Section 4 derives a theorem used
for parameter estimation. A sample simulation example is
included in Section 5. Finally, Section 6 concludes the paper.

2. NOTATION AND PROBLEM STATEMENT

Throughout the paper, we use the following notation for am×
n dimensional matrix A={aij}. |A|: Matrix with component-
wise absolute values of A; ‖A‖: Frobenius norm of A; A†:
Pseudo inverse of A; (A > 0): A is symmetric positive definite.
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In denotes an Identity matrix of order n; Jm×n: (m × n)
matrix with all entries equal to one; 1n: column vector of
order n with unit entries. Let ⊗ and ◦, respectively, denote
Kronecker product and Hadamard product; a(i,•): i-th row of
matrix A, i.e., [ai1, . . . , ain]. Moreover, for two vectors u and
v, u ≤ v refers to their component-wise inequality, i.e., ui ≤
vi. Notation ∗ denotes the transpose of the corresponding
block in the upper triangle of a symmetric matrix.
Graph Theory: A = {aij} ∈ RN×N : Weighted adjacency
matrix for graph G; L: Laplacian matrix; Ni: neighbouring
set for agent i. For details on algebraic graph theory, refer
to [19].

We consider an agent network comprising of N agents.
The general linear dynamics of agent i, for (1 ≤ i ≤ N), is

ẋi(t) = Axi(t) +Biui(t) +Diωi(t), (1)

where xi(t) ∈ Rn is the state vector in time instant t, ui(t) ∈
Rm is the control input vector and ωi(t) defines the external
disturbance for agent i. Despite the common practice [10,19]
that assumes similar state matrices (A, Bi, and Di) across the
network, we only consider A to be identical among agents. We
note that pairs (A,Bi) are controllable.

Definition 1. Under a proposed distributed protocol ui(t),
the consensus problem is solved if and only if limt→∞ ‖ xi(t)−
xj(t) ‖= 0, (1 ≤ i, j ≤ N), for any initial states [26].

The agents share their information with the neighbours to
asymptotically reach consensus. However, in order to decrease
the number of transmissions, agent i transmits its states to
the neighbouring nodes only under certain condition. De-
noting ti0, t

i
1, . . . as the triggering time sequence of agent i,

we define the most recently broadcasted state of agent i as
x̂i(t) = xi(tik) for any interval between two consecutive trig-
gering instants, i.e., t ∈ [tik tik+1). In order to achieve con-
sensus the following control law is proposed for agent i

ui(t) = Ki

∑
j∈Ni

(x̂i(t)− x̂j(t)), (2)

where Ki ∈ Rm×n is the control gain to be computed.

3. PROBLEM FORMULATION

We proceed to formulate the problem in this section. Let
ei(t) = x̂i(t) − xi(t) denote the error between the most re-
cently transmitted state, x̂i(t), and its instantaneous value,
xi(t), for agent i. For the purpose of analysis in a col-
lective manner, we define x(t)=[xT1 (t), . . . ,xTN (t)]T as the
stacked state vector and x̂(t)=[x̂T1 (t), . . . , x̂TN (t)]T as the
stacked vector for last transmitted states, which together
define the stacked error vector e(t)=x̂(t) − x(t). We also
define ω(t)=[ωT1 (t), . . . ,ωTN (t)]T as the stacked external dis-
turbance vector. Based on the predefined parameters, the
following augmented closed-loop system is derived

ẋ(t) =
(
A〈N〉 +BKL〈n〉

)
x(t) +BKL〈n〉e(t) +Dω(t), (3)

where L〈n〉 = L ⊗ In, A〈N〉 = IN ⊗ A, B = diag(B1 , . . . , BN),
D = diag(D1 , . . . , DN), and K = diag(K1 , . . . ,KN). With the
aim to minimize the impact of noise on the closed-loop per-
formance the H∞ control problem [16] is defined next.

Definition 2. Under zero-initial states, the H∞ disturbance
rejection performance for system variable, x(t), accompanied
by a given positive definite weighting matrix R, is achieved if
J =

∫∞
0

(
xT (t)Rx(t)− ρ2ωT (t)ω(t)dt

)
< 0 is fulfilled for a

given positive-valued scalar ρ.

System Transformation: We note that the control design
problem for system (3) is troublesome, since L〈n〉 contains a
zero eigenvalue [16]. A common solution is to convert the con-
sensus problem to stability problem by applying proper state
transformation, e.g., x̄(t) = Tx(t) [23]. However, the stabil-
ity of the transformed system, (i.e., limt→∞ x̄(t) = 0), must
be equivalent to the consensus problem for (3). Therefore,
let L̂ ∈ R(N−1)×N denote reduced Laplacian matrix which is
obtained by removing an arbitrary row of the L. Then, the
following transformation is proposed

x(r)(t) = L̂〈n〉x(t), (4)

where L̂〈n〉 = L̂ ⊗ In. According to Lemma 1, the consensus
problem for system (3) is equivalent to the stability problem
for the transformed system expressed as x(r)(t).

Lemma 1. x(r)(t) = 0 if and only if x1(t) = · · · = xN(t). In
other words, the consensus is satisfied if x(r)(t) = 0.

The proof of Lemma 1 is omitted to save on space. Using
Transformation (4), we convert System (3) as follows

ẋ(r)(t) = Axx(r)(t) + Aee(r)(t) + L̂〈n〉Dω(t), (5)

where e(r)(t)=L̂〈n〉e(t), Ax=A〈N−1〉+L̂〈n〉BKL, Ae=L̂〈n〉BKL,
with L=L〈n〉 L̂

†
〈n〉 and A〈N−1〉=IN−1 ⊗ A. Note that, the equal-

ities L̂〈n〉A〈N〉=A〈N−1〉 L̂〈n〉 , and, L=LL̂†L̂, are also used to de-
rive (5). Moreover, e(r)(t)=x̂(r)(t)−x(r)(t) holds in the trans-
formed domain. Before proceeding to the next section, we
note that for the convenience of discussion and without loss
of generality, we remove the N -th row of L to obtain L̂.
Event-Triggering Scheme: In order to propose and for-
mulate the event-triggering condition, we first define dis-
agreement vector for agent i as X̂i(t) = l

〈n〉
(i,•)x̂(t), with

l
〈n〉
(i,•) = l(i,•) ⊗ In. Similarly, let X̂(t) = [X̂1(t), . . . , X̂N(t)]T

denote the stacked disagreement vector. With the latter defi-
nition, x̂(r)(t) is the independent rows of X̂(t). The triggering
function for agent i is given by the following inequality

‖ei(t)‖≤ φ‖X̂i(t)‖, (6)

where φ is the transmission threshold to be maximized to
provide minimum number of transmission. While ‖ei(t)‖ is
lower than φ‖X̂i(t)‖, the state vector is not transmitted.
However, when the two sides of (6) become equal, the new
information, xi(t), is transmitted to the neighbours. The set
of inequities in (6) are integrated in the following component-
wise inequality by defining the normed-vectors e[Nr] =
[‖e1(t)‖, . . . , ‖eN(t)‖]T , and X̂

[Nr] = [‖X̂1(t)‖, . . . , ‖X̂N(t)‖]T .

e[Nr] ≤ φX̂[Nr]
. (7)

In order to derive maximum stable threshold φ, the event-
triggering condition (7) should be expressed by x(r)(t) and
e(r)(t). Therefore, the following two Lemmas are given.
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Lemma 2. Event-triggering condition (7) is equivalent to

L̂e[Nr] ≤ φ|L̂|X̂[Nr]
. (8)

Lemma 3. Let ψe = [‖l〈n〉(1,•)e(t)‖, . . . , ‖l〈n〉(N−1,•)e(t)‖]T and
ψx̂ = [‖φm〈n〉(1,•)x̂(r)(t)‖, . . . , ‖φm〈n〉(N−1,•) x̂(r)(t)‖]T , where m〈n〉(i,•) =
m(i,•)⊗In and triggering matrix M = {mij} ∈ R(N−1)×(N−1) =
{lij + αj liN} with α = [α1 , . . . , αN−1 ] = l(N,•)L̂

†. If a certain
φ satisfies the following entry-wise inequality

ψe ≤ ψx̂ (9)

it also satisfies the inequality given in (8).
Lemmas 2 and 3 are proved using the reverse trian-

gle inequality and sub-additivity property associated with
the Euclidean norm. Due to space limitation, the proofs
are not included here. Based on Lemma 3, any φ sat-
isfying (9) also satisfies (8). Moreover, Inequality (8) is
equivalent to (7) according to Lemma 2. Inequality (9) can
be expressed as a global quadratic constraint in the form
of eT(r)e(r) ≤ x̂T(r)M

T
〈n〉Φ2M〈n〉x̂(r), where Φ = φI(N−1)n, and

M〈n〉 = M ⊗ In. The quadratic form of (9) is useful for
maximizing φ, when x̂(r) is replaced by x̂(r) = e(r) +x(r). The
following inequality will be used in Section 4 to determine
the maximum possible threshold φ.

eT(r)e(r) ≤ (e(r) + x(r))T MT
〈n〉Φ2M〈n〉 (e(r) + x(r)) . (10)

4. PARAMETER ESTIMATION

Theorem 1 is derived using the Lyapunov framework. It com-
putes the heterogeneous control gains Ki’s and maximum
transmission threshold φ. It guarantees stability of the re-
duced system (5) and ensures consensus in system (3).
Theorem 1. Given scalar ρ > 0 and positive definite weight-
ing matrices Ri ∈ Rn×n (1 ≤ i ≤ N − 1), the following opti-
mization problem computes the control gains, Ki, (1 ≤ i ≤ N)
and the transmission threshold, φ, for state model (3)

min
Θi,γ,τ,P

γ (11)

subject to:

[
Π1 Π2

∗ Π3

]
< 0, P > 0, τ > 0, γ > 0,

with Π1 =

[
π11 ΞL
∗ −τI

]
, Π2 =

[
PL̂〈n〉D τMT

〈n〉

0 τMT
〈n〉

]
,

and Π3 = diag
(
−ρ2I,−γI

)
.

The undefined parameters in (11) are given by: π11 =
AT〈N−1〉P + PA〈N−1〉 + R + ΞL + LTΞT , Ξ =

(
L̂⊗ Jn×n

)
◦

(1N−1 ⊗ [Θ1 , . . . ,ΘN ]), P = IN−1⊗P, R = diag(R1 , ..., RN−1),
where P ∈ Rn×n, Θi ∈ Rn×n (1 ≤ i ≤ N) and scalars {τ, γ}
are the optimization parameters. Expressed in terms of these
optimization parameters, terms Ki’s and φ are computed as

φ =
√
τγ−1, Ki = B†iP

−1Θi, i = 1, ..., N. (12)

Proof. We start the proof with the following inequality which
ensures stability conditions for the reduced system (5) and

Algorithm 1: Proposed Event-based Consensus
Input: A = {aij}, Agents’ dynamics given in (1).
Output: Asymptotic Event-triggered State Consensus

Parameter Estimation: (E1 – E5)
I. Initialization
E1. Transformation Matrix: Remove N th row of L in order

to determine the reduced Laplacian matrix, L̂.
E2. System Transformation: Determine reduced system (5).
E3. Triggering Matrix: Using Lemma 3, determine M〈n〉.
II. Design
E4. Solving the LMI’s: Using convex optimization solvers,

solve the LMIs (11) for a given H∞ parameters, {R, ρ}.
E5. Feasibility Verification: If a solution exists for (11), ob-

tain φ, and Ki’s from (12). Otherwise, change parameters
{R, ρ}, and repeat step E4.

Event-triggered Consensus: (C1 – C3)
C1. Initialization: Initialize by allowing all agents to transmit

their initial states xi(0) to their neighbours.
C2. Execution: Using Ki’s derived in Step E4, the states of

agent i in (1) is excited by (2). Condition (6) is responsible
to determine the next state transmission to neighbours for
agent i as the states evolves to reach consensus.

C3. Consensus Achievement: Agent i repeats Step C2 until
convergence is achieved for the disagreement state vector,
i.e., ‖X̂i(t)‖< δi where δi is the stopping criterion.

the H∞ performance at the same time [20]

V̇ (x(r)) + xT(r)Rx(r) − ρ2ωTω < 0, (13)

where V (x(r)) = xT(r)Px(r) is the Lyapunov candidate func-
tion. Now considering Υ = [xT(r), e

T
(r),ω

T ]T , we expand (13)

ΥT

 ATxP + PAx +R PAe PL̂〈n〉D

∗ 0 0
∗ ∗ −ρ2I

Υ < 0. (14)

Now the event-triggering condition (10), must be placed into
(14). To this end, we apply S-procedure [17]. The slack vari-
able τ appears in the resulting integrated inequality as

Π̄ =

Π̄11 Π̄12 PL̂〈n〉D

∗ Π̄22 0
∗ ∗ −ρ2I

 < 0, (15)

with Π̄11 = ATxP + PAx +R+ τMT
〈n〉Φ2M〈n〉, Π̄12 = PAe +

τMT
〈n〉Φ2M〈n〉 and Π̄22 = −τI+τMT

〈n〉Φ2M〈n〉. Although fea-
sible solutions can be found for (15), however, maximization
over φ is still a non-convex problem. To tackle this problem,
we first apply Schur complement [17] on (15)

ATxP + PAx +R PAe PL̂〈n〉D τMT
〈n〉Φ

∗ −τI 0 τMT
〈n〉Φ

∗ ∗ −ρ2I 0
∗ ∗ ∗ −τI

 < 0. (16)
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Fig. 1: Evolution of state consensus using Theorem 1.
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Fig. 2: Controller effort ui(t) for the proposed approach.

Then, pre and post-multiplying of (16) by positive definite
matrix Ω = diag(I, I, I,Φ−1) leads to

ATxP + PAx +R PAe PL̂〈n〉D τMT
〈n〉

∗ −τI 0 τMT
〈n〉

∗ ∗ −ρ2I 0
∗ ∗ ∗ −τΦ−2

 < 0. (17)

The matrix inequality (17) is not linear due to numerous
products of variables. To prevent difficult computations over
BMIs, proper change of variables is necessary to derive LMIs
condition. Therefore, we first expand PAe:

PAe =
(
L̂⊗ Jn×n

)
◦ (1N−1 ⊗ [PB1K1 , . . . ,PBNKN ])L (18)

Now, by changing variables as Θi = PBiKi, the term Ξ in
(11) is obtained. The same change of variables can be applied
for expanded PAx. Moreover, we define the alternative vari-
able γ to represent τφ−2, i.e., γIn(N−1) = τΦ−2. As a result,
maximization over φ is now equivalent to minimizing γ. Once
the LMIs are solved, optimization variables {τ, P,Θi, γ} are
obtained and φ, and Ki’s can be derived from (12).
Algorithm 1 summarizes the proposed consensus approach.

5. EXPERIMENTAL RESULTS

We consider the 2nd order, 5-agent system [14,18] given by

ṙi(t) = vi(t), (19)
miv̇i(t) = ui(t) + ωi(t), (1 ≤ i ≤ 5),

where ri(t), vi(t), mi, and ωi(t) denote the position, velocity,
inertia, and external disturbance for agent i, respectively. Un-
like most earlier work where the inertias in second-order sys-
tems are not taken into account by simply assuming mi = 1,
here we consider heterogeneous inertias as fully discussed
in [25]. Therefore, our heterogeneous approach is relevant
since the underlying dynamics justify the need for a hetero-
geneous control design. Considering xi(t) = [ri(t), vi(t)]T , we
derive the state matrices for (19) based on (1).

A =

[
0 1
0 0

]
, Bi =

[
0

1 + 0.1i

]
, Di =

[
0

1 + 0.1i

]
. (20)

The directed communication topology of the multi-agent sys-
tem (20) is given by L = [2,−1, 0,−1, 0; 0, 2,−1, 0,−1; 0,−1,

Table 1: Performance comparison for the two approaches.

Approach
# transmissions per agent Consensus

time (sec)1 2 3 4 5
Theorem 1 39 128 119 67 123 7.32
Method [29] 74 106 140 88 104 8.95

3,−1,−1; 0,−1, 0, 2,−1;−1, 0, 0,−1, 2]. To solve the consen-
sus problem using Theorem 1, we initialize R = 0.04I8,
and ρ = 0.03. The initial state values are picked at ran-
dom as x1(0)=[1, 2]T , x2(0)=[2, 5]T , x3(0)=[4, 8]T , x4(0)=
[5, 6]T and x5(0)=[7, 7]T . Using the YALMIP parser and
SDPT3 solver in MATLAB [24], we solve (11) for the afore-
mentioned given parameters. The computed values for the
gains are K1=[0.50, 0.38], K2=[0.41, 0.47], K3=[0.49, 0.63],
K4=[0.43, 0.46], andK5=[0.74, 0.87]. The transmission thresh-
old φ is calculated from (12) as φ=0.212. The state trajec-
tories of the five agents are shown in Fig. 1 for the stopping
criterion δi=0.01. Fig. 2 plots the controllers’ force as de-
fined in (2) based on the values of Ki’s and φ. We compare
the results from Theorem 1 with the event-based consensus
approach proposed in [29]. In [29], the stable K needs to
satisfy ABK=A. Therefore, position measurements are ig-
nored in second-order agents. Table 1 provides a comparison
between our proposed approach given in Theorem 1 with its
counterpart [29] under identical initial conditions.

As shown in Table 1, the proposed approach uses a lower
total number of transmissions (476 versus 512, or about a
7 to 8% improvement). In terms of the CPU time, consen-
sus is achieved faster with the proposed approach. In larger
networks, we observed a higher performance gain.

6. SUMMARY AND FUTURE WORK

The paper addresses the problem of achieving distributed
event-based consensus in heterogeneous, multi-agent/sensor
networks. The Lyapunov stability theorem is used to compute
the heterogeneous control gains and the transmission thresh-
old based on the LMI optimization framework. The effective-
ness of the proposed algorithm is examined through simu-
lations for heterogeneous, 2nd order multi-agent systems. In
future, we are interested in applying the proposed event-based
consensus algorithm to distributed state estimation networks.
In such an application, the proposed event-based consensus
algorithm will be extended to achieve consensus for the local-
ized state estimates and their corresponding statistics.
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