
ON THE BIAS OF PSEUDOLINEAR ESTIMATORS FOR TIME-OF-ARRIVAL BASED
LOCALIZATION

Ngoc Hung Nguyen? and Kutluyıl Doğançay†?
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ABSTRACT
Closed-form pseudolinear estimators are computationally attractive
alternatives to iterative nonlinear techniques. For time-of-arrival
(TOA) based localization, several pseudolinear estimators have been
proposed such as the least squares calibration (LSC) estimator, the
linear least squares (LLS) estimator, and their best linear unbiased
estimator (BLUE) variants (namely, the BLUE-LSC and BLUE-LLS
estimators). Despite their stable performance and low computational
complexity, these pseudolinear estimators suffer from bias problems
due to the nonzero mean of the pseudolinear noise vectors. In this
paper, we present a bias analysis for the TOA-based pseudolinear
estimators. Based on the bias analysis we develop bias compen-
sation methods that lead to new bias-compensated versions of the
LSC, LLS, BLUE-LSC and BLUE-LLS estimators. The superior
performance of the proposed bias-compensated estimators is demon-
strated via numerical simulations. The new estimators are observed
to exhibit negligible estimation bias even at high measurement noise
levels.

Index Terms— Time-of-arrival, source localization, sensor ar-
ray, bias compensation, least squares

1. INTRODUCTION

Source localization has been an area of extensive research for many
years due to its wide range of applications in mobile communica-
tions, wireless sensor network, search and rescue, radar and sonar,
to name but a few. Common localization methods are based on
time-of-arrival (TOA) [1–14], angle-of-arrival (AOA) [15–17], time-
difference-of-arrival (TDOA) [13, 18–21], Doppler frequency [15,
22–25], and received signal strength (RSS) [26] measurements col-
lected by a number of spatially distributed sensors or a single moving
sensor. In this paper, we focus our attention on the problem of source
localization in the two-dimensional (2D) plane using TOA measure-
ments obtained from an array of spatially distributed sensors.

In TOA-based localization, the one-way or round-trip propaga-
tion time of the signal between the source and each of the sensors
is measured, which traces out a circle centred at the sensor posi-
tion for the possible source positions. With three or more sensors, a
unique solution of the source position can be obtained by converting
the TOA measurements into a set of circular equations and exploit-
ing the knowledge of the sensor array geometry. To deal with the
nonlinearity of the circular TOA equations, iterative approaches are
commonly used in the literature such as the Taylor-series method [1]
and the steepest descent method [2]. However, the main drawback
of these techniques is their computationally demanding iterative na-
ture. In addition, the iterative techniques require a good initial guess
that must be sufficiently close to the actual source position to en-
sure convergence to the global solution. An attractive alternative

approach is to algebraically rearrange the nonlinear TOA equations
into a set of equations that are linear in the unknowns, thereby al-
lowing the use of least squares (LS) estimation [4–6]. In particu-
lar, the reformulated linear equations in the least squares calibration
(LSC) method [4] were derived based on the introduction of an ex-
tra nuisance parameter which is a function of the source position.
On the other hand, the linear least squares (LLS) method [5, 6] re-
lies on subtracting linear LSC equations so as to eliminate the com-
mon nuisance parameter and form a set of nuisance-parameter-free
linear equations. The performance of the LSC and LLS estimators
were improved in [7] by exploiting the best linear unbiased estima-
tor (BLUE) technique, resulting in the BLUE-LSC and BLUE-LLS
estimator. It was proved in [7] that the performance of the BLUE-
LLS estimator with the linear equations corresponding to an inde-
pendent set of sensor pairs is identical to that of the BLUE-LLS
estimator. Another refinement of the LSC estimator was proposed
in [9], namely the constrained weighted LSC (CWLSC) estimator,
by imposing a constraint on the relation between the nuisance pa-
rameter and the source position. However, the CWLSC estimator
requires a significantly higher computational load than the BLUE-
LSC and BLUE-LLS estimators [7]. Other localization techniques
based on multidimensional scaling, multidimensional similarity and
constrained optimization can also be found in the literature (see,
e.g., [10–13] and the references therein).

Despite the advantages of low computational complexity and
high stability, the closed-form pseudolinear estimators, i.e., the LSC,
LLS, BLUE-LSC and BLUE-LLS estimators, proposed in [4–7] suf-
fer from bias. The main reason for the bias problems of the pseudo-
linear estimators is that the measurement noise vector is no longer
zero-mean as a result of the algebraic nonlinear-to-linear transfor-
mation of the TOA equations. In this paper, we aim to analyse the
bias of the LSC, LLS, BLUE-LSC and BLUE-LLS estimators and
propose bias compensation methods by exploiting the mean of the
pseudolinear noise vector. The effectiveness of the proposed bias
compensation methods is illustrated by way of numerical simula-
tion examples, where the proposed bias-compensated versions of the
LSC, LLS, BLUE-LSC and BLUE-LLS estimators are observed to
exhibit very small bias even at moderate and high measurement noise
levels.

The paper is organized as follows. Section 2 defines the TOA-
based localization problem. An overview of closed-form pseudo-
linear estimators is provided in Section 3 including the LSC, LLS,
BLUE-LSC and BLUE-LLS estimators. The bias of these estimators
is analysed in Section 4. Section 5 presents the proposed bias com-
pensation methods. Simulation results are presented in Section 6.
The paper concludes in Section 7 with a brief summary.
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Fig. 1. TOA-based localization geometry with M sensors.

2. PROBLEM FORMULATION

The problem of 2D source localization using TOA measurements is
depicted in Fig. 1, where p = [px, py]

T is the unknown source posi-
tion to be determined and ri = [rx,i, ry,i]

T , i = 1, 2, . . . ,M , is the
position of the ith sensor. Here, the superscript T stands for matrix
transpose. The one-way TOA measurement obtained at sensor i is
given by

τ̃i(p) = τi + ei (1)

where τi = ‖p−ri‖
c

, ‖ · ‖ denotes the Euclidean norm, c is the speed
of signal propagation, and ei is the TOA measurement error. For
simplicity, the line-of-sight propagation between the source and all
the sensors is assumed such that each ei is a zero-mean independent
white process with known variance E{e2i }. Note that the error vari-
ance E{e2i } is commonly a function of the source-sensor distance
among other things. Given the signal propagation speed c, the range
measurement between the source and sensor i can be expressed as

d̃i(p) = di + ni (2)

where di = ‖p − ri‖ is the true range and ni = cei is the corre-
sponding range measurement error with E{n2

i } = σ2
i (i.e., E{e2i } =

σ2
i /c

2).
Solving for p from range measurements d̃1, . . . , d̃M requires

at least two measurements (i.e., M ≥ 2) because there are two
unknowns px and py . However, at least three measurements (i.e.,
M ≥ 3) are required to ensure the uniqueness of the solution since
two TOA circles may intersect at two distinct points.

3. OVERVIEW OF PSEUDOLINEAR ESTIMATORS

3.1. LSC and BLUE-LSC

Squaring both sides of (2) gives [4]

rx,ipx + ry,ipy − 0.5R =
1

2
(r2x,i + r2y,i − d̃2i ) +mi (3)

where R = ‖p‖2 is the additional nuisance parameter introduced in
the process of arriving at (3) and mi = n2

i /2 + dini is the resulting
pseudolinear noise. By stacking the pseudolinear equations (3) for
i = 1, . . . ,M , we have

Aθ + η = b (4)

where

A =

 rx,1 ry,1 −0.5
...

...
...

rx,M ry,M −0.5

 (5a)

θ =
[
px py R

]T (5b)

η = −
[
m1 · · · mM

]T (5c)

and

b =
1

2

 r2x,1 + r2y,1 − d̃21
...

r2x,M + r2y,M − d̃2M

 . (5d)

Solving (4) for θ in least squares sense yields [4]

θ̂LSC =
(
ATA

)−1
ATb, (6)

and the LSC estimate of p can be straightforwardly obtained from
θ̂LSC as

p̂LSC = θ̂LSC(1 : 2). (7)

Similarly, the BLUE for θ can be obtained with the use of the
covariance matrix Cη = E{ηηT } [7]:

θ̂BLUE-LSC =
(
ATC−1

η A
)−1

ATC−1
η b (8)

and the BLUE-LSC estimate of p can be extracted from θ̂BLUE-LSC

using
p̂BLUE-LSC = θ̂BLUE-LSC(1 : 2). (9)

The covariance matrix Cη is approximated by [7]

Cη ' diag
(
d21σ

2
1 , . . . , d

2
Mσ

2
M

)
(10)

for sufficiently small noise levels. Note that the knowledge of di,
i = 1, . . . ,M , is not readily available. Therefore d̃i is used instead
to compute Cη .

3.2. LLS and BLUE-LSS

The nuisance parameterR in (3) can be eliminated by writing (3) for
the 1st and ith sensors and subtracting the equation for the 1st sensor
from the equation for the ith sensor:

(rx,i − rx,1)px + (ry,i − ry,1)py

=
1

2
(r2x,i + r2y,i − r2x,1 − r2y,1 − d̃2i + d̃21) +mi −m1.

(11)

Writing (11) in matrix form for i = 2, . . . ,M gives

Gp+ ε = h (12)

where

G =

 rx,2 − rx,1 ry,2 − ry,1
...

...
rx,M − rx,1 ry,M − ry,1

 (13a)

ε =

m1 −m2

...
m1 −mM

 (13b)

and

h =
1

2

 r2x,2 + r2y,2 − r2x,1 − r2y,1 − d̃22 + d̃21
...

r2x,M + r2y,M − r2x,1 − r2y,1 − d̃2M + d̃21

 . (13c)
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The LLS estimate of p is now obtained by solving (12) in the
LS sense [5, 6]:

p̂LLS =
(
GTG

)−1
GTh, (14)

On the other hand, the BLUE-LLS estimate is given by [7]

p̂BLUE-LLS =
(
GTC−1

ε G
)−1

GTC−1
ε h (15)

with the use of the covariance matrix Cε = E{εεT }:

Cε '


d21σ

2
1 + d22σ

2
2 d21σ

2
1 · · · d21σ

2
1

d21σ
2
1 d21σ

2
1 + d23σ

2
3 · · · d21σ

2
1

...
...

. . .
...

d21σ
2
1 d21σ

2
1 · · · d21σ

2
1 + d2Mσ

2
M


(16)

Similar to Cη , the unknown di, i = 1, . . . ,M , are replaced by d̃i to
compute Cε in practice.

Note that, although the first sensor is chosen here as the refer-
ence sensor, the performance of the BLUE-LLS estimator remains
the same if an independent set of sensor pairs is used to formulate
the LLS equations.

4. BIAS ANALYSIS

By substituting (4) into (6), the LSC estimate θ̂LSC of θ can be ex-
pressed as

θ̂LSC = θ +
(
ATA

)−1
ATη. (17)

Thus, the bias of θ̂LSC is given by

δLSC = E{θ̂LSC} − θ

=
(
ATA

)−1
ATE{η}.

(18)

Similarly, the bias of θ̂BLUE-LSC , p̂LLS , and p̂BLUE-LLS are given by

δBLUE-LSC = E{θ̂BLUE-LSC} − θ

=
(
ATC−1

η A
)−1

ATC−1
η E{η}, (19)

δLLS = E{p̂LLS} − p

=
(
GTG

)−1
GTE{ε}, (20)

δBLUE-LLS = E{p̂BLUE-LLS} − p

=
(
GTC−1

ε G
)−1

GTC−1
ε E{ε}. (21)

The algebraic transformation of nonlinear TOA equations causes
the pseudolinear noise vectors η and ε to have nonzero means:

E{η} = −

 E{m1}
...

E{mM}

 = −1

2

 σ
2
1

...
σ2
M

 6= 0 (22a)

and

E{ε} =

 E{m1 −m2}
...

E{m1 −mM}

 =
1

2

 σ
2
1 − σ2

2

...
σ2
1 − σ2

M

 6= 0. (22b)

Note that, since the noise variance σ2
i is a function of the source-

sensor distance, we have σ2
j 6= σ2

i in general, therefore leading to
E{ε} 6= 0.

Consequently, the nonzero mean of E{η} and E{ε} in (22)
implies that the LSC, LLS, BLUE-LSC and BLUE-LLS estima-
tors are biased (i.e., δLSC 6= 0, δLLS 6= 0, δBLUE-LSC 6= 0 and
δBLUE-LLS 6= 0).

5. BIAS COMPENSATION

The bias-compensated LSC (BC-LSC) estimate of θ is obtained by
subtracting the bias term δLSC in (18) from the LSC estimate θ̂LSC

in (14):

θ̂BC-LSC = θ̂LSC − δLSC =
(
ATA

)−1
AT (b− E{η}

)
, (23)

and the BC-LSC estimate of p is consequently extracted from
θ̂BC-LSC as

p̂BC-LSC = θ̂BC-LSC(1 : 2). (24)

Similarly, the bias-compensated LLS (BC-LLS) estimator is given
by

p̂BC-LLS = p̂LLS − δLLS =
(
GTG

)−1
GT (h− E{ε}

)
. (25)

The same bias compensation approach can be applied directly
to the BLUE-LSC and BLUE-LSS estimator if the exact expression
of the weighting matrices Cη in (10) and Cε in (16) is obtained by
using di, i = 1, . . . ,M , instead of d̃i. However, the fact that d̃i
is used to calculate Cη and Cε (since di is unknown) may result
in undesirable bias performance of the BLUE-LSC and BLUE-LSS
estimators in large noise conditions. To avoid this problem, a two-
stage bias-compensated BLUE-LSC (BC-BLUE-LSC) estimator is
proposed as follows:

1. Compute p̂BLUE-LSC using (8) and (9).

2. Compute d̂i = ‖p̂BLUE-LSC − ri‖, i = 1, . . . ,M , and con-
struct C†η in (10) using d̂i.

3. Compute

θ̂BC-BLUE-LSC=
(
AT (C†η)

−1A
)−1

AT (C†η)
−1(b−E{η}

)
.

(26)

4. Extract p̂BC-BLUE-LSC = θ̂BC-BLUE-LSC(1 : 2).

Similarly, for the BLUE-LLS method, we have the following
two-stage bias-compensated BLUE-LLS (BC-BLUE-LLS) algo-
rithm:

1. Compute p̂BLUE-LLS using (15).

2. Compute d̂i = ‖p̂BLUE-LLS − ri‖, i = 1, . . . ,M , and con-
struct C†ε in (16) using d̂i.

3. Compute

p̂BC-BLUE-LLS=
(
GT (C†ε)

−1G
)−1

GT (C†ε)
−1(h−E{ε}

)
.

(27)

6. SIMULATION STUDIES

In this section, we demonstrate the performance of the proposed
bias-compensated pseudolinear estimators, viz., the BC-LSC, BC-
LLS, BC-BLUE-LSC and BC-BLUE-LLS estimators, in compari-
son to the conventional LSC, LLS, BLUE-LSC and BLUE-LLS es-
timators, by way of Monte Carlo simulations. We consider a simu-
lated TOA-based localization scenario with a source located at p =
[0,−3000]T m and four sensors located at r1 = [3000, 3000]T m,
r2 = [−3000, 3000]T m, r3 = [−3000,−3000]T m, and r4 =
[3000,−3000]T m. The measurement error variance at each sensor
is range-dependent and modelled as σ2

i = σ2
0d

2
i /d

2
0, where σ0 ∈

{20, 40, 60, 80, 100} m is the reference variance and d0 = 1000 m
is the reference range.
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Table 1. Bias Performance

Bias norm (m)
σ0 (m) LSC BC-LSC LLS BC-LLS BLUE-LSC BC-BLUE-LSC BLUE-LLS BC-BLUE-LLS

20 1.2174 0.1906 1.1612 0.2705 1.6590 0.0070 1.6590 0.0070
40 4.7480 0.2121 4.6853 0.2971 6.6756 0.0625 6.6756 0.0625
60 11.0671 0.4450 11.2179 0.6487 14.5049 0.2649 14.5049 0.2649
80 19.7096 0.8696 19.5617 0.9331 25.7279 0.5826 25.7279 0.5826
100 29.9931 0.0984 30.0149 0.0777 40.4164 0.1685 40.4164 0.1685

Table 2. RMSE Performance

RMSE (m)
σ0 (m) LSC BC-LSC LLS BC-LLS BLUE-LSC BC-BLUE-

LSC
BLUE-LLS BC-BLUE-

LLS
BLUE

Bound(a)
CRLB(b)

20 153.0575 153.0527 182.2563 182.2529 115.9787 115.9440 115.9787 115.9440 115.8912 113.9332
40 306.0218 305.9850 364.5240 364.4940 232.0843 231.7393 232.0843 231.7393 231.7824 227.8664
60 459.2532 459.1201 546.8693 546.7546 348.9682 347.9188 348.9682 347.9188 347.6736 341.7995
80 613.8229 613.5070 731.0536 730.7925 467.3568 464.8881 467.3568 464.8881 463.5648 455.7327
100 767.3943 766.8080 913.8549 913.3619 585.5170 580.8790 585.5170 580.8790 579.4560 569.6659

(a) the square root of the trace of the theoretical covariance matrix of the BLUE-LSC and BLUE-LLS estimators
(b) the square root of the trace of the CRLB matrix estimators

For performance comparison, the bias norm and root mean
squared error (RMSE) of the estimators are estimated via 1,000,000
Monte Carlo simulation runs. The bias norm is defined by ‖E{p̂X}−
p‖ while the RMSE is defined by

(
trE{(p̂X −p)(p̂X −p)T }

)1/2,
where p̂X is a position estimate under consideration. In addition,
the square root of the trace of the theoretical covariance matrix of
the TOA-based BLUE estimators and the square root of the trace of
the CRLB matrix are also computed as performance benchmarks.
The theoretical covariance matrices of the source position estimates
obtained by the BLUE-LSC estimator and the BLUE-LLS estimator
with an independent set of sensor pairs are identical and given by [7]

Cp '
(
GTC−1

ε G
)−1

. (28)

The CRLB matrix for TOA-based localization has the expression of

CRLB =
(
JTK−1J

)−1 (29)

where K = diag(σ2
1 , . . . , σ

2
M ) is the covariance matrix of the mea-

surement vector n = [n1, . . . , nM ]T , and J = [JT
1 , . . . ,J

T
M ]T

with Ji = (pT − rTi )/‖p − ri‖ is the Jacobian matrix evaluated
at the true source position p.

Table 1 shows the bias performance of the proposed BC-LSC,
BC-LLS, BC-BLUE-LSC and BC-BLUE-LLS estimators in com-
parison to that of the conventional LSC, LLS, BLUE-LSC and
BLUE-LLS estimators for σ0 ∈ {20, 40, 60, 80, 100} m. It is ob-
served from Table 1 that the conventional LSC, LLS, BLUE-LSC
and BLUE-LLS estimators suffer from bias problems and their
bias norms become significantly large as the measurement noise is
increased. In contrast, by taking into account the nonzero mean
of the pseudolinear noise vector, the proposed BC-LSC, BC-LLS,
BC-BLUE-LSC and BC-BLUE-LLS estimators exhibit negligible
bias even for large measurement noise levels. This confirms the
effectiveness of the proposed bias-compensation methods in amelio-
rating the bias problem associated with the conventional LSC, LLS,
BLUE-LSC and BLUE-LLS estimators.

Table 2 shows the RMSE performance of the estimators for σ0 ∈
{20, 40, 60, 80, 100} m. In addition to the bias performance ad-
vantage as discussed above, the proposed BC-LSC, BC-LLS, BC-
BLUE-LSC and BC-BLUE-LLS estimators appear to slightly out-
perform the corresponding LSC, LLS, BLUE-LSC and BLUE-LLS
estimators, respectively. Moreover, the BLUE-LSC and BLUE-LLS
estimators as well as the BC-BLUE-LSC and BC-BLUE-LLS esti-
mators exhibit RMSE performance in agreement with the theoretical
BLUE covariance matrix. In addition, it is also observed that their
RMSE performance is slightly worse than the CRLB. This observa-
tion is consistent with the suboptimality of these types of estimators
that has been discussed in [7].

7. CONCLUSION

Despite their low computational complexity and stable performance,
the closed-form pseudolinear estimators for TOA-based localization
are plagued by bias problems due to the nonzero mean of the pseu-
dolinear noise vector resulting from the transformation of the non-
linear TOA measurement equations. In this paper, we have analysed
the bias properties of the LSC, LLS, BLUE-LSC and BLUE-LLS
estimators. In addition, we proposed bias compensation methods ex-
ploiting the mean of the pseudolinear noise vector, resulting in four
new bias-compensated pseudolinear estimators for TOA localiza-
tion; viz., the BC-LSC, BC-LLS, BC-BLUE-LSC and BC-BLUE-
LLS estimators. The performance of proposed bias compensation
methods was demonstrated by way of numerical Monte Carlo simu-
lations. Specifically, it was observed that, in contrast to the conven-
tional LSC, LLS, BLUE-LSC and BLUE-LLS estimators that suffer
from severe estimation bias at moderate and large noise levels, the
proposed BC-LSC, BC-LLS, BC-BLUE-LSC and BC-BLUE-LLS
estimators exhibit negligible bias even in large noise conditions.
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