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ABSTRACT

This paper concerns detecting the frequency components from
a spectral sparse, undersampled signal. This problem is also
called super-resolution line spectral estimation because the
frequencies can take arbitrary continuous values. The prior
knowledge of the frequency distribution is often available
in many applications. To exploit the prior knowledge, a
weighting function w(f) designed according to the frequency
distribution p(f) is introduced. The prior information can
be harnessed through minimizing the corresponding weighted
log-sum penalty function. We solve the optimization problem
through iteratively decreasing a surrogate function majorizing
the original penalty function. Simulation results show that the
proposed algorithm outperforms other methods both in noise-
less and noisy case, and it also presents superior performance
in resolving closely-spaced frequency components.

Index Terms— Compressed sensing, super-resolution, iter-
ative reweighted method, probabilistic prior

I. INTRODUCTION

Line spectral estimation aims to infer the spectral com-
ponents of the observed signal and is an extensively stud-
ied problem in communications, radar, sonar and so on.
Conventional methods like MUSIC [1] and ESPRIT [2] are
based on subspace and thus require an estimate of the data
covariance. Such an estimate, however, is always difficult to
obtain in compressive data. There are some state-of-the-art
spectrum estimation techniques based on sparse representation
of the under-sampled signal over the past few years. Candès
and Fernandez-Granda proposed the breakthrough technique
of super-resolution [3] that recover frequencies in a con-
tinuous domain through total variation minimization. Tang
et al. proposed another grid-free method based on atomic
norm minimization [4]. Both of the two approaches have the
theoretical guarantee that the continuous-valued frequencies
can be exactly recovered provided the frequencies are well
separated. Apart from harnessing the spectral sparsity in the
continuous domain directly, another line of research [5]–[7]
combined sparse signal recovery and dictionary refinement. In
[5], the perturbation of the dictionary caused by gird mismatch
is modeled as a structured parameterized matrix through first-
order Taylor expansion. The frequencies are obtained from
both the support of the sparse signal and the estimate of
the off-grid difference. In [6], the Fourier dictionary is pa-

rameterized by unknown frequencies and both the frequency
grids and the corresponding complex amplitudes are estimated
under Bayesian framework. In [7], we proposed an iterative
reweighted approach to jointly update the sparse signal and
parameterized dictionary.

Nevertheless, except for spectral sparsity, these super-
resolution techniques assume no other prior information of
the signal. While in many applications, the prior knowledge
of the frequency distribution is always available from previous
observations. There are some works [8]–[10] that handle the
prior knowledge by weighted atomic norm minimization. The
weighting scheme is similar to those methods in conventional
compressed sensing with partially known support [11], [12]. In
[8], [9], the authors construct a piecewise constant weighting
function to exploit the block prior and transform the problem
to a semidefinite program (SDP) with several linear matrix
inequalities (LMI). In [10], a Capon’s power spectrum like
weighting function is proposed leading to an SDP formulation
with only a single LMI that can be solved efficiently.

In this paper, we propose an algorithm for super-resolution
line spectral estimation when prior knowledge of the frequency
f is available. We extend our previous work [7] to improve
the performance of frequency detection by harnessing the prior
information. The weighting function w(f) designed according
to the frequency distribution p(f) is introduced and the prior
information can be exploited through minimizing the corre-
sponding weighted log-sum penalty function. We solve the op-
timization problem through iteratively decreasing a surrogate
function majorizing the original penalty function. Simulation
results show that the proposed algorithm outperforms other
methods both in noiseless and noisy case, and it also presents
superior performance in resolving closely-spaced frequency
components.

II. PROBLEM FORMULATION

The frequency sparse signal in line spectral estimation or
direction-of-arrival (DOA) estimation could be formulated as
a summation of a number of complex sinusoids:

yl =

K∑
k=1

z⋆ke
−j2πf⋆

k l + εl, l ∈ L (1)

where L = {1, . . . , L}, f⋆
k ∈ [0, 1) denotes the frequency of

the k-th component, z⋆k is the corresponding complex ampli-
tude and εl represents the observation noise. In many practical
applications, the original signal is observed on an index set
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M ⊂ L, |M| = M ≤ L. Denote M , {s1, . . . , sM}
and define a(f) , [e−j2πfs1 e−j2πfs2 . . . e−j2πfsM ]T . The
observed signal can be rewritten in a vector-matrix form as

y = A(f⋆)z⋆ + ε (2)

where y , [ys1 . . . ysM ]T , ε , [εs1 . . . εsM ]T , z⋆ ,
[z⋆1 . . . z⋆K ]T , and A(f⋆) , [a(f⋆

1 ) . . . a(f⋆
K)]. Suppose

the prior knowledge of the probability distribution of the
frequencies {f⋆

k} is obtained. Let F ∈ [0, 1] be a random
variable that describes the signal frequencies. The probability
density function (pdf) of F is p(f). Our objective is to recover
the continuous-valued frequencies {f⋆

k} given the observed
signal y and the prior distribution p(f).

A. Weighted log-sum penalty function
To exploit the sparsity of the frequency components in

the original signal, in our previous work [7], we construct a
parametric dictionary A(f) , [a(f1) . . . a(fN )], M ≪ N
and formulate the problem as:

min
z,f

N∑
n=1

log(|zn|2 + ϵ)

s.t. ∥y −A(f)z∥2 ≤ η (3)

where zn denotes the nth component of the vector z, ϵ > 0
is a positive parameter to ensure that the function is well-
defined, and η is the error tolerance parameter depended on
the noise variance. The log-sum penalty function, which was
proved theoretically [13] to be more sparsity-encouraging than
the ℓ1-norm, is used and both the parameters {fn} and {zn}
are optimized in the continuous domain.

When the prior information about the frequency distribu-
tion is available, inspired by some prior-knowledge aided
approaches in compressed sensing [11], [12] and spectral
super-resolution [8]–[10], we replace the objective in (3) with
its weighted counterpart to improve the recovery performance.
The new optimization problem is formulated as:

min
z,f

L(z,f) =
N∑

n=1

log(w(fn)|zn|2 + ϵ)

s.t. ∥y −A(f)z∥2 ≤ η (4)

where w(f) > 0 is a weighting function to penalize the
frequency f and the formation of it would be discussed later.
By removing the constraint and adding a data fitting penalty,
the optimization (4) can be formulated as an unconstraint
problem as:

min
z,f

G(z,f) , L(z,f) + λ∥y −A(f)z∥22 (5)

To gain some insights into our proposed model, denote
v(f) , w(f)/ϵ. We have an equivalent penalty of the
weighted log function:

log(w(f)|z|2 + ϵ) ∝ log(v(f)|z|2 + 1) (6)

Consider two penalty functions defined as h1(z) , |z| and
h2,v(z) , log(v|z|2 + 1)/ log(v + 1), v > 0, while both
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Fig. 1. The plots of three penalty functions: h1(z), h2,102 (z) and h2,104 (z)

functions satisfy h1(±1) = h2,v(±1) = 1. The plots of
h1(z) and h2,v(z) with two different values of v are shown in
Fig. 1. It can be observed that h2,v(z) has a steeper slope
than h1(z) has at the origin, which indicates that the log
penalty function has the potential to be much more sparsity-
encouraging than the ℓ1 norm. Furthermore, to h2,v(z), the
capability in promoting sparsity increases with the value of v.

Guided by the insights discussed above, it is reasonable
for w(f) be a relatively large value when there is a small
likelihood of occurrence of frequency f . Conversely, those
frequency components with large p(f) should be weighted
lightly in order to express a preference of them. The rule to
choose w(f) is flexible. For example, for any kind of prior
distribution, the inverse of Capon’s power spectrum computed
by p(f) [10] could be used as the weighting function.

The most common knowledge available in super-resolution
is the block prior, where all the frequencies are known to lie
in the union of certain frequency bands. Let fLi and fHi ,
i = 1, . . . , I are the lower and upper cut-off frequencies of
each bands respectively. Therefore, we have the union be B ,∪I

i=1 Bi where Bi , [fLi , fHi ], i = 1, . . . , I , are disjoint
interval. Suppose the frequencies are uniformly distributed on
B. Then we have p(f) = B−1 on B and p(f) = 0 on [0, 1)\B
where B =

∑I
i=1(fHi − fLi). In the rest of this paper we

consider only the block prior and in the next subsection we
proposed an applicable weighting function for it.

B. Weighting function for block prior

The ideal weighting function for block prior used in [8], [9]
is the piecewise constant function in the domain [0, 1):

w̄B(f) =

{
d1, f ∈ B
d2, f /∈ B

(7)

where d1, d2 ∈ R+ and d1 ≪ d2. However, this function is
non-differentiable at the boundary points of each Bi. It would
make the optimization problem (5) intractable. To circumvent
this problem, a differentiable weighting function is proposed
empirically to fit w̄(f) and exploit the block prior information,
which is given by:

w̃B(f) = d2

(
1−

I∑
i=1

e−
1
2 ((f−µ(Bi))/σ(Bi))

2p

)
+ d1 (8)
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Fig. 2. The plots of weighting functions of w̄B(f) and w̃B(f) with B =
[0.2, 0.3] ∪ [0.7, 0.8], p = 16, d1 = 0.02 and d2 = 1.

where p ∈ Z+ is a constant. µ(Bi) , (fLi + fHi)/2 is the
midpoint of Bi and σ(Bi) , (fLi − fHi)/2 is half the width
of Bi. The plots of w̄B(f) and w̃B(f) are shown in Fig. 2 for
B = [0.2, 0.3]∪ [0.7, 0.8]. We can see that w̄B(f) is well fitted
by w̃B(f) while it has nearly constant values at B and a sharp
slope at the bound of Bi. Furthermore, the differentiability of
w̃B(f) can make the problem (5) tractable.

III. PROPOSED ALGORITHM
To solve the optimization (5), we now develop an iterative

reweighted algorithm for joint dictionary parameter learning
and sparse signal recovery based on majorization-minimization
(MM) approach [14], [15]. We first construct a differentiable
and convex surrogate function majorizing L(z,f) which is
given by

Q(z,f |ẑ(t), f̂
(t)
) ,

N∑
n=1

(
w(fn)|zn|2 + ϵ

w(f̂
(t)
n )|ẑ(t)n |2 + ϵ

− 1

+ log(w(f̂ (t)
n )|ẑ(t)n |2 + ϵ)

)
(9)

where ẑ(t) , [ẑ
(t)
1 . . . ẑ

(t)
N ]T , f̂

(t) , [f̂
(t)
1 . . . f̂

(t)
N ]T

denotes an estimate of z and f at iteration t. The inequality
Q(z,f |ẑ(t), f̂

(t)
)− L(z,f) ≥ 0 could be easily verified and

the equality hold when z = ẑ(t), f = f̂
(t)

. Consequently the
surrogate function for G(z,θ) is

S(z,f |ẑ(t), f̂
(t)
) ,Q(z,f |ẑ(t), f̂

(t)
)

+ λ∥y −A(f)z∥22 (10)

We now minimize the surrogate function iteratively to
solve (5). With the terms independent of {z,f} ignored, the
minimization of the surrogate function (10) is simplified as

min
z,f

zHD(t)(f)z + λ∥y −A(θ)z∥22 (11)

where [·]H denotes the conjugate transpose, and D(t)(f) is a
diagonal matrix given as

D(t)(f) , diag
{

w(f1)

w(f
(t)
1 )|ẑ(t)1 |2 + ϵ

, . . . ,
w(fN )

w(f
(t)
N )|ẑ(t)N |2 + ϵ

}
Conditioned on f , the optimal z of (11) can be readily
obtained as

z∗(f) = C−1(f)AH(f)y (12)

where C(f) , AH(f)A(f)+λ−1D(t)(f). Substituting (12)
back into (11), then the optimization becomes searching for
the unknown parameter f :

min
f

g(f) , −yHA(f)C−1(f)AH(f)y (13)

It is difficult to obtain an analytical solution of the above
optimization (13). In our algorithm, however, we only need
to search for a new estimate f̂

(t+1)
satisfying the following

inequality

g(f̂
(t+1)

) ≤ g(f̂
(t)
) (14)

Since g(f) is differentiable for our case, such an estimate can
be easily obtained by using a gradient descent method. Given
f̂
(t+1)

, ẑ(t+1) can be obtained via (12), with f replaced by
f̂
(t+1)

, i.e.

ẑ(t+1) = z∗(f̂
(t+1)

) (15)

The new estimate {ẑ(t+1), f̂
(t+1)

} could result in a non-
increasing objective function value, that is,

G(ẑ(t+1), f̂
(t+1)

) ≤ G(ẑ(t), f̂
(t)
) (16)

The proof of (16) is the same as that in [7] and we omit it
due to space restrictions.

λ is the regularization parameter to control the tradeoff
between the data fitting error and the sparsity of the solution.
We have proposed a strategy to update λ in [7] that λ(t) can
be updated as

λ(t) =
M

∥y −A(f̂
(t)
)ẑ(t)∥22

(17)

The iterative update of λ can also be seamlessly integrated into
our algorithm here. We summarize our algorithm as follows.

Prior-Knowledge Aided Iterative Reweighted Algorithm

1. Given an initialization ẑ(0), f̂
(0)

, and λ(0).

2. At iteration t = 0, 1, . . .: Based on ẑ(t), f̂
(t)

and
λ(t), construct the surrogate function as depicted in
(10). Search for a new estimate of the frequency
vector f̂

(t+1)
through gradient descent method while

keeping the inequality (14) satisfied. Compute a new
estimate of the sparse signal, denoted as ẑ(t+1), via
(15). Compute a new regularization parameter λ(t+1)

according to (17).
3. Go to Step 2 if ∥ẑ(t+1) − ẑ(t)∥2 > ν, where ν is a

prescribed tolerance value; otherwise stop.

IV. SIMULATION RESULTS
We now carry out experiments to illustrate the performance

of the proposed prior-knowledge aided super-resolution iter-
ative reweighted algorithm (denoted as KA-SURE-IR). The
recovery performance is evaluated by success rate which is
computed as the ratio of the number of successful trials to
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Fig. 3. Success rates of respective algorithms vs. M (without noise), N =
64, K = 3.

the total amount of experiments. A single trial is consid-
ered successful if the error between the frequency estimate
{f̂k} and the groundtruth {f⋆

k} is smaller than 10−3, i.e.
∥f⋆ − f̂∥2 ≤ 10−3. The standard super-resolution iterative
reweighted algorithm (SURE-IR) [7] without exploiting any
prior information is compared in the experiments. We also
compare our proposed algorithm with weighted atomic norm
minimization (WANM) [9] which is another prior knowledge
aided method. Here SDPT3 [16] is used to solve WANM.

In the first simulation the respective methods are examined
in the noiseless scenario. The observed signal is obtained
via (2) with the amplitudes {z⋆k} uniformly distributed on
the unit circle and the frequencies {f⋆

k} uniformly generated
over B where B = [0.2, 0.3] ∪ [0.7, 0.8]. Get w̃B(f) from B
according to (8) where p = 16, d1 = 0.02 and d2 = 1. We
do not control the minimum separation of the frequencies.
In Fig. 3 we plot the success rates of these algorithms as a
function of the number of measurements M with N = 64
and K = 3. Each points are computed by 103 independent
runs. Compared with the performance of SURE-IR, we see
that the proposed method significantly improves the success
rate by exploiting prior knowledge. While our algorithm also
outperforms WANM which is guaranteed to attain the global
optimum. This is because the log-sum penalty is more sparsity-
encouraging than the atomic norm which is the continuous
counterpart of ℓ1-norm in the discrete domain.

In the second experiment we test the anti-noise capability
of each method. The observed signal is corrupted by inde-
pendent and identically distributed (i.i.d.) zero-mean com-
plex Gaussian noise ε. The effect of noise is evaluated by
the peak-signal-to-noise ratio (PSNR) which is defined as
PSNR , 10 log10(1/σ

2), where σ2 is the noise variance. We
set PSNR = 25dB and the other setup are the same as those in
the first simulation. The performance is presented in Fig. 4. It
can be observed that our proposed method is superior to other
methods. Furthermore, the success rates of SURE-IR and KA-
SURE-IR decrease slightly compared with the noiseless case
while WANM suffers from a serious performance degradation.

At last we study the ability of our algorithm in resolving
closely-spaced frequency components. The signal y is a mix-
ture of three complex sinusoids with their frequencies given by
{f0−µ/N, f0, f0+µ/N} where f0 is randomly generated over
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Fig. 4. Success rates of respective algorithms vs. M , N = 64, K = 3, and
PSNR = 25dB.
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Fig. 5. Success rates of respective algorithms vs. the frequency spacing
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TABLE I
RUN TIMES OF RESPECTIVE ALGORITHMS

Algorithm KA-SURE-IR WANM SURE-IR
Running Time (sec) 0.71 25.67 1.93

Success rate 0.89 0.47 0.65

B and µ is the frequency spacing coefficient ranging from 0.4
to 2. Fig. 5 depicts the success rates of respective algorithms
vs. the frequency spacing coefficient µ with N = 64 and
M = 10. Each point is obtained based on 103 Monte Carlo
runs. When the frequency components are very close to each
other, (say, µ ≤ 1), the proposed method still have a good
performance whereas WANM can hardly identify the true
frequency parameters and its performance is even worse than
SURE-IR which is developed without prior information. This
is possibly because the atomic norm based methods have
limited capability in distinguishing closely located complex
sinusoids. The average running times of respective algorithms
are also provided (Table I), where µ is set to 1.

V. CONCLUSIONS
In this paper we proposed an algorithm for super-resolution

line spectral estimation when the prior knowledge of frequency
f is available. The weighting function w(f) depending on the
frequency distribution p(f) is introduced and the prior infor-
mation can be exploited through minimizing the corresponding
weighted log-sum penalty function. Simulation results show
that the proposed algorithm outperforms other methods both
in noiseless and noisy case, and it also has a good performance
in resolving closely-spaced frequency components.
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