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ABSTRACT

In modern heterogeneous sensor networks huge volumes of infor-
mation rapidly flow across the system, and it is often too difficult
or costly to associate data to the sensors that produced them. Then,
the set of observations appears to be unlabeled: What comes from
whom? We study the classical problem of detecting a known signal
embedded in Gaussian noise, but under the peculiar assumption that
the signal samples have been scrambled (e.g., in time or space) in an
unknown way.

Our study sheds light on questions like: How much detection
performance is contained in the samples’ values and how much in
their ordering? Are there nicely-performing detectors with afford-
able computational complexity?

Index Terms— Signal detection, unlabeled data, data associa-
tion, scrambled signal, sample permutation.

1. INTRODUCTION

This is the time of the internet of things and big data: the objects
around us – mobile phones, vehicles, buildings, surveillance cam-
eras, environmental monitoring stations, homeland security devices,
and many others – collect and deliver an enormous amount of het-
erogeneous data that in many cases is eventually processed to some
Central Unit (CU) for inference and decision-making about some
Phenomenon of Interest (PoI), examples of which are determining
low-traffic routes, indicating stores for desired goods, suggesting
safer places in the case of health risks, tracing escape routes in the
case of security issues, and so forth. Managing such an enormous
amount of data poses extremely challenging problems that often re-
quire new approaches.

Consider, in this scenario, a surveillance/monitoring system or-
ganized as a sensor network where sensors take measurements about
the PoI and deliver these data to the CU which is demanded to make
the final inference. One example is a network of unmanned vehicles
or micro-satellites, connected to a common CU. It is often the case
that the sensors (unmanned vehicles or satellites) cannot be easily
synchronized, so that a sequence of data collected at the CU can-
not be precisely associated to a specific sequence of time instants or
geographical points.

In these and many similar applicative scenarios, when the
surveillance/monitoring system is part of the more general inter-
net of things and the global volume of data is huge, technological
issues often prevent the precise association between time instants
(say) and samples of the observed sequence. This inspired the
present work, whose theme is as follows. We are engaged in a
detection problem between two hypotheses: observations contain
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only noise, against the hypothesis that observations are originated
by a perfectly known signal sequence, embedded in noise. The key
point is that the known signal sequence is permuted in an unknown
way.1 What can be done in these circumstances assuming that the
detector should be reasonably simple to work with huge volumes of
data, which imposes severe computational and memory constraints?

The addressed scenario can be abstracted to the following
model. We have a detection problem in which a known N -sequence
signal s = (s1, . . . , sN )T is to be detected by processing a set of
N observations r = (r1, . . . , rN )T , with each rn corresponding
to a sample of the known signal, contaminated – we assume for
concreteness – by additive white Gaussian noise wn, accounting
for measurement and any other source of errors. However, different
from the very basic and classical problem in the detection literature,
here there is uncertainly about which rn refers to which signal sam-
ple: each observation rn is originated by one and only one sample of
s, but all the possible associations (permutations) between sensors
and samples must be accounted for.

We investigate several detectors – mainly heuristically derived –
and discuss their performance. Our goal is to provide viable solu-
tions to the detection problem, namely solutions that are reasonably
simple to implement and provide acceptable performance. The next
section contains standard material and serves as reference. In Sect. 3
we present the main results, followed by numerical experiments in
Sect. 4, while final remarks are provided in Sect. 5.

2. BACKGROUND

2.1. Completely Known Signal
Let theN×1 vector s = (s1, . . . , sN )T be a known real signal, and
let s(π) = (sπ(1), . . . , sπ(N))

T be the N -sequence obtained from s
after the sample permutation π ∈ Π, where Π is the class of all N !
permutations of the set {1, . . . , N}. Let ps := 1

n

∑N
n=1 s

2
n be the

signal power (arithmetic square mean value), µs := 1
N

∑N
n=1 sn the

arithmetic mean, and 1
N

∑N
n=1(sn − µs)2 the arithmetic variance.

Consider the hypothesis test:

H0 : r = w,

H1 : r = w + s(π),
(1)

where w = (w1, . . . , wN )T is aN×1 vector whose entries are zero-
mean Gaussian i.i.d. (independent, identically distributed) random
variables with variance σ2, and r = (r1, . . . , rN )T . In the following
we denote by P0 (resp. P1) the probability measure under hypothesis
H0 (resp.H1).

1We say that the observed samples are unlabeled, which we hope is not
to be confused with the problem of training data without labels, arising in
machine learning literature.
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If the permutation π is known, the optimal detection statis-
tic in the Neyman-Pearson sense (see e.g., [1]) is the squared
norm ‖r − s(π)‖2 or, equivalently, the scalar product 〈r, s(π)〉 :=∑N
n=1 rnsπ(n) yielding the optimal test in the form

Scla := 〈r, s(π)〉 =
H1
>
<
H0

γ, (2)

where the threshold γ is chosen in such a way that Pf := P0(Scla ≥
γ) is set to a desired level. The detector in (2) will be referred to as
clairvoyant, and the resulting detection probability is [1–3]

Pd = P1(Scla ≥ γ) = Q(Q−1(Pf )−
√
Nps/σ2), (3)

where Q(x) :=
∫∞
x

1√
2π

exp{−t2/2} dt is the standard Gaussian
exceedance function and Q−1(·) its inverse. A convenient perfor-
mance figure is provided by the Signal-to-Noise Ratio (SNR) ρs :=
Nps/σ

2.

2.2. Energy Detector

Suppose instead that the signal samples are completely unknown
to the detector, i.e., s(π) is a deterministic unknown vector. Then,
a possible approach would be to resort to the GLRT (Generalized
Likelihood Ratio Test) approach in which the unknown signal sam-
ples are replaced by their ML (Maximum Likelihood) estimate [2–
5]. Since there is no statistical dependence among the samples of
the observed vector r, and the noise is Gaussian, it is easily seen
(cfr., [2]) that the ML estimate of the n-th signal sample is nothing
but the n-th observation itself rn. In other words, the GLRT for
the case at hand amounts to replacing sπ(n) by rn in the detection
statistic of the clairvoyant detector, yielding the test in the form of
an energy detector:2

Sene :=
1

N

N∑
n=1

r2
n

H1
>
<
H0

γ. (4)

The performance of the energy detector is simply found in the form:

Pd = P1(Sene ≥ γ) = 1− χ2,N,ρs

(
χ−1

2,N,0(1− Pf )
)
, (5)

where χ2,a,b(·) is the chi-square Cumulative Distribution Function
(CDF) [6] with a degrees of freedom and non-centrality parameter
b, and χ−1

2,a,b(·) is its inverse [7]. A convenient approximation of the
above expression is [2, p. 298]:

Pd = Q

(
Q−1(Pf )−

√
ρ2
s/(2N)√

1 + 2ρs/N

)
. (6)

3. DETECTION WITH PERMUTED SIGNAL

Consider now the case of interest in which s is known, but π is not:
we know the values of the signal samples, but their actual position
inside the vector s(π) is unknown.

2To avoid cumbersome notation the thresholds of the various tests will be
generically denoted by γ; this does not imply that they are equal.

3.1. GLRT: Ordered Data Detector

Lacking the knowledge of the permutation π ∈ Π, one classical
approach would be to resort to the GLRT: the likelihood ratio is re-
placed by the maximum of the likelihood ratios over the class Π
of all the possible permutations. Thus, conceptually, one first de-
cides among N ! mutually exclusive hypotheses (the possible per-
mutations), and then implements the likelihood ratio test between
the signal-plus-noise distribution with the selected permutation, and
the only-noise distribution. It is easy to see that the GLRT detection
statistic for the test in (1) amounts to

Sord := max
π∈Π

〈r, s(π)〉
H1
>
<
H0

γ, (7)

where the maximum is over all theN ! permutations. The maximiza-
tion in (8) does not require that one compute the N ! permutations,
in the light of the following simple result.

Let s̄ = (s(1), s(2), . . . , s(N))
T be the ordered version of vector

s, in increasing order, namely i < j⇒ s(i) ≤ s(j) and, similarly, let
r̄ = (r(1), r(2), . . . , r(N))

T be the ordered version of the observed
vector r.

LEMMA 1: maxπ∈Π 〈r, s(π)〉 = 〈r̄, s̄〉. •

Proof: The proof can be found in the literature, see, e.g., [8,
App. I], but is given here for self-consistency. First, note that
maxπ∈Π

∑N
n=1 rnsπ(n) = maxπ∈Π

∑N
n=1 r(n)sπ(n), namely we

can replace r with its ordered counterpart r̄. Consider then two ad-
dends of the sum

∑N
n=1 r(n)sπ(n), say r(m)sπ(m) + r(k)sπ(k), with

m < k. If sπ(m) > sπ(k), then exchanging these two entries in-
creases (or leaves unchanged) the value of the sum. To see this, note
that sπ(m) > sπ(k) implies (r(m)−r(k))(sπ(m)−sπ(k)) ≤ 0, which
can be rewritten as r(k)sπ(k)+r(m)sπ(m) ≤ r(k)sπ(m)+r(m)sπ(k).
Exchanging the two entries is tantamount to selecting a different per-
mutation of the set Π, and this procedure is repeated until no more
exchanges are possible. The only permutation π̄ ∈ Π with this
property is when m < k⇒ s(m) ≤ s(k), namely that for which the
signal vector is sorted in increasing order s(π̄) = s̄, which proves
the claim. �

Using Lemma 1, the statistical test can be written in the simple
form

Sord = 〈r̄, s̄〉
H1
>
<
H0

γ, (8)

which will be referred to as the ordered-data test.
In general, the GLRT is not optimal. The GLRT is expected to

perform well when the unknown parameter can be efficiently esti-
mated as happens, e.g., when the signal-to-noise ratio is large and/or
when the estimation quality improves as the number of samples N
grows. Unfortunately, in our setting, increasing N corresponds to
increasing the number of unknowns, namely, the number of possible
configurations (permutations) of the known signal samples. As al-
ready observed, the energy detector is also a GLRT, which estimates
the underlying signal blindly, namely, without any prior knowledge
of the signal samples. In this connection, it is very interesting to
evaluate the effective information gain that can be achieved from the
knowledge of the scrambled signal sequence. In other words, it is
legitimate to ask whether: i) the ordered-data detector really takes
advantage of the scrambled signal sequence, or ii) the difficulty of
the estimation task, especially for large N, makes the ordered-data
detector almost equivalent to the energy detector. Such aspects will
be addressed in due detail when illustrating the experimental results.
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3.2. Linear Approach: Mean Detector

In order to handle the lack of knowledge of the permutation π ∈ Π,
another possible approach is to look for some linear transformation
of the data that is invariant with respect to π. This approach is close
in spirit to the synthetic discriminant function approach used in pat-
tern recognition [9]. In formulas, we seek a matrix A ∈ <M×N
such that y := A r is invariant. Since r = w+s(π) this translates to
requiring that A s(π1) = A s(π2) for any π1, π2 ∈ Π. The statistical
test (1) then becomes

H0 : y = Aw,

H1 : y = A (w + s(π)).
(9)

A little thought reveals that the aforementioned requirement is
met if the rows of A have constant entries, namely:

A =


α1 α1 . . . α1

α2 α2 . . . α2

...
...

. . .
...

αM αM . . . αM

 , (10)

in which case we have ym = αmNµs, for m = 1, . . . ,M . Simi-
larly, them-th entry of the noise vectorAw results inαm

∑N
n=1 wn.

This implies that test (9), when using matrix A in (10), is equivalent
to the test made on a single entry, e.g., the m-th, of the observed y.
Since in that case the constant αm can be set to 1/N with no loss of
generality, the statistical test reduces to the following, with the scalar
observation y: H0 : y = 1

N

∑N
n=1 wn,

H1 : y = µs + 1
N

∑N
n=1 wn,

(11)

where 1
N

∑N
n=1 wn ∼ N (0, σ2/N), which is a shortcut to stat-

ing that
∑N
n=1 wn is Gaussian with mean 0 and variance σ2/N . In

terms of the original observation vector r, the optimal solution for
test (9) is

Smean :=
1

N

N∑
n=1

rn

H1
>
<
H0

γ (12)

for µs ≥ 0, while the inequalities are reversed for µs < 0. The
resulting performance is

Pd = Q(Q−1(Pf )−
√
Nµ2

s/σ2). (13)

The SNR loss incurred by this “mean” detector with respect to the
clairvoyant, using for the latter the approximation (6), is

Lmean/cla := 1− µ2
s

ps
. (14)

LEMMA 2: Lmean/cla ∈ [0, 1]. Lmean/cla is equal to 0 (no
loss) if and only if s is a constant signal (all entries are equal), and
Lmean/cla is equal to 1 (maximum loss) if and only if µs = 0. •

Proof: This follows straightforwardly from definition (14), by ex-
ploiting the fact that the arithmetic variance is nonnegative: 0 ≤
1
N

∑N
n=1(sn−µs)2 = ps−µ2

s, with equality if and only if sn = µs
for all i = 1, . . . , N . �

We see that the detector using the statistic Smean performs as
well as the optimum only when the signal is constant, which is ob-
vious because in that case the permutation has no effect at all, and
the two detectors are actually the same. To the other extreme, a sig-
nal with arithmetic mean equal to zero cannot be detected using the
mean detector. In general, the performance of the mean detector
is expected to be reasonable when µ2

s is close enough to the signal
power ps.

3.3. CDF-Based Detector

The bottom line of the analysis conducted in the previous two sec-
tions is that: i) the GLRT is expected to be neither optimal, nor
necessarily well-suited to our problem, especially for large number
of samples, and ii) the linear approach works for nonzero-mean sig-
nals, which appears to be an unnecessary restriction to a particular
class of signals. These considerations motivate us to seek alternative
solutions. In designing a novel detector, we are primarily guided by
the following observations.
• There is no particular reason to focus only on the first moment
(i.e., the mean) of the signal when designing a detector. Some useful
information could also be contained in the higher-order moments.
• The detector must depend upon the signal sequence, but we seek a
detector which is invariant to permutations of the signal sequence.
• Finding alternatives to a GLRT approach when the dimensional-
ity of the unknown parameter is large, and/or increases with N , is a
challenging problem. Notable examples that have been considered
in the literature include the case of transient detection [10–16], and
fall under the umbrella of the general problem of simultaneous de-
tection and estimation [17–20]. One appealing strategy is that of
constructing a suitable prior distribution for the signal, and design-
ing the corresponding (Bayes/minimax-optimal) detector. In doing
so, one should cleverly include the available knowledge about the
signal in the prior model.
• Given the lack of knowledge about the true signal ordering, know-
ing the signal samples essentially corresponds to knowing the em-
pirical CDF of the signal sequence. Note that the empirical CDF
intuitively matches our idea of encompassing the information about
higher-order moments.
• Let us interpret the entries in the sequence s as i.i.d. realizations
drawn from the empirical Probability Density Function (PDF) [6]:

1

N

N∑
n=1

δ(s− sn), (15)

where s is the independent variable, the sn’s are the known signal
samples, and δ(s) is the Dirac delta generalized function. This PDF
is perhaps the most straightforward solution to select a prior on the
signal. (Elaborating on the empirical distribution is reminiscent of
the popular method of types for finite alphabets, see, e.g., [21].)

In the light of the above observations, we construct the Neyman-
Pearson detector corresponding to the case that, underH1, the signal
samples are drawn from the PDF in (15). Accordingly, the distribu-
tion of the data under H1 results in the convolution of the Gaussian
PDF of wn with the PDF in (15), yielding:

f1(r)

f0(r)
= N−N

N∏
i=1

N∑
n=1

esn(ri−sn/2)/σ2

. (16)

Taking the logarithm and incorporating constant terms into the
threshold, we finally get:

Scdf :=
1

N

N∑
i=1

log
N∑
n=1

esn(ri−sn/2)/σ2
H1
>
<
H0

γ, (17)

which will be referred to as the CDF-based detector.
A remark is now in order. At least for sufficiently large N , it

might be expected that knowledge of the signal sequence (not of
the ordering) does not add much more information with respect to
treating the signal sequence as a random sequence. However, we
exclude availability of a model for the distribution of the signal sam-
ples, while we assume availability of the scrambled signal sequence.
Such signal sequence is exploited by the CDF-based detector to com-
pute an empirical distribution of the samples.
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Fig. 1: ROC of different detectors with ρs = 10 dB, N = 100. The
signal is a linearly increasing sequence made of N equally spaced
samples with the shown values of the parameters ps and µs.

4. NUMERICAL EXPERIMENTS

We run computer experiments to simulate the detection system under
H0 and under H1. The signal s is a linearly increasing sequence
made of N equally spaced samples from s1 = min(s1, . . . , sN )
to sN = max(s1, . . . , sN ), where s1 and sN are chosen to ensure
that the signal s has prescribed values of arithmetic mean value µs
and power ps. Figure 1 refers to µs = 0.5 and various values of
ps. We assume N = 100 signal samples and the SNR is ρs = 10.
The results of the numerical experiments are reported in Fig. 1 in
the form of ROC (Receiver Operating Characteristic) curves, i.e., by
plotting Pd versus Pf . The theoretical formulas (solid lines) refer
to eq. (3) for the clairvoyant, eq. (5) for the energy detector, and
eq. (13) for the mean detector. The symbols refer to the ordered-data
and to the CDF-based detectors, respectively, and are obtained by
means of computer simulations based on 104 Monte Carlo runs.

In the four panels of Fig. 1 the ROC curves of the clairvoyant
and of the energy detector are the same, as their performance only
depends on ρs and N . In the upper-left panel we see that the mean,
the ordered-data, and the CDF-based detectors perform similarly,
and close to the clairvoyant. In the remaining three panels we see
a certain superiority of the CDF-based detector, which seems to ex-
ploit better the information contained in the data. Conversely, the
ordered-data detector first is outperformed by (upper-right) and then
outperforms (lower-right) the mean detector, and they are essentially
equivalent in the case addressed in the lower-left panel.

Next, we consider a spiky signal obtained by first defining a lin-
early increasing sequence made ofN equally spaced samples (in the
shown example from s1 = −0.297 to s100 = 0.297), then adding a
spike at the first sample (s1 = 10) and finally subtracting the mean
value of the resulting signal in order to impose zero mean. With the
signal sequence so constructed, we obtain Fig. 2. The mean detec-
tor, needless to say, is useless. The ordered-data and the CDF-based
perform similarly and significantly better than the energy detector,
showing remarkable ability to exploit the information contained in
the unordered samples.

Admittedly, the number of signal samples considered in our nu-
merical experiments (N = 100) is rather small compared to the typi-
cal numbers arising in the applications mentioned in Sect.1. Simula-
tions on much larger scale and/or comparison with available datasets
used as benchmark are certainly desirable, and left for future studies.
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Fig. 2: ROC of different detectors with ρs = 10 dB, N = 100. The
signal is a zero-mean spiky sequence (see main text), with the shown
values of ps.

5. FINAL REMARKS

The scenario with a known signal embedded in white Gaussian noise
is among the most classical and widely known examples of signal de-
tection problems, whose Neyman-Pearson solution is the so-called
matched filter (the “clairvoyant,” in this work). The modern ubiq-
uity of sensor networks and similar kinds of distributed inference
systems operating under the emerging paradigms of the internet of
things and big data motivated us to study the aforementioned de-
tection problem by assuming that the signal samples are unlabeled.
How much “information for detection” is contained in the unknown
signal ordering? How much is contained in the sample values and is
therefore retained? How to exploit that by a computationally afford-
able detector?

Consider the upper-right panel in Fig. 1: the performance of en-
ergy detector represents what can be done without knowledge of the
signal values. The detectors investigated in this work show a re-
markable performance gain with respect to the energy detector, and
the performance gap shown in the figure quantifies what it can be
gained by the knowledge of the signal values. Similarly, the gap be-
tween the performance of these detectors and that of the clairvoyant
one quantifies the additional information that could be retrieved by
knowing who comes from whom.

Our studies reveal a certain superiority of the CDF-based detec-
tor over the GLRT and the mean detectors, which makes sense in the
light of the arguments discussed in this paper. But we also see that
the CDF-based and the GLRT perform similarly when the signal is
zero mean (Fig. 2). In addition, for zero-mean signals which are less
“spiky” than those considered in Fig. 2, computer experiments not
reported here reveal that the performance of these two detectors is
close to that of the energy-based one. This suggests further investi-
gations.

Other lines for further studies include other forms of time (or
space) uncertainty, including, e.g., possible repetitions of the same
sample, “local” scrambling of nearby samples, and so forth. The
present study can be also extended to the detection of signals de-
fined over graphs, where the time or space dependence is replaced
by the more structured association between samples and network
nodes, assuming (partially) unknown labeling. We plan to address
some of these issues in an extended version of this work, which is in
preparation.
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