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ABSTRACT

In the most general case, source localization has to take into account
the radiation pattern of the sources of interest. This is particularly
important when the sensors surround the sources, and the sources are
anisotropic, as is the case in several applications (EEG, speech, mu-
sical instruments, etc.). Cramér-Rao bounds for the joint estimation
of the position of a source and its radiation pattern are computed for
simple cases of sensor array geometries and source models, showing
that a good match between the source and the model improves the
Cramér-Rao bounds. It is also shown that, in general, using a model
more complex than the source makes the Fisher information matrix
singular. These results are supported by numerical simulations and
physical interpretations.

Index Terms— Source localization, Cramér-Rao bounds, mul-
tipoles, acoustic imaging

1. INTRODUCTION

Most of source localization methods are concerned with far-field
sources. In this case, only the direction of arrival of the source is
to be estimated. The radiation pattern of the source is neglected,
as it can be considered constant over the angle spanned by the sen-
sor array relative to the source. However, true isotropic sources (or
monopolar sources) are the exception. Most sources have a non-
isotropic radiation pattern.

Examples include:

• Electroencephalograms (EEG), where sources are dipoles
• turbulence noise, radiating like a quadrupole [1]
• electroacoustic sources, such as unbaffled (radiating as

dipoles) or cardioid speakers
• sound radiated by an exploding bubble (dipole)
• human voice[2]
• scattering of a electromagnetic or acoustic plane wave by an

object.

When the sensor array is in the near-field of the sources, or when
the sensors surround the sources, it is no longer possible to neglect
the anisotropy of the radiation pattern.

In this case, the position of the sources and the radiation pattern
have to be jointly estimated. Several methods can be used for this
estimation problem:

• generalizations of the MUSIC (MUltiple SIgnal Classifica-
tion) algorithm [3, 4]
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Fig. 1. Radiation pattern of monopolar, dipolar, cardioid and
quadrupolar sources.

• or group-sparsity models and corresponding identification
methods (mixed-norms, block matching pursuits, etc.) [5].

In this paper, we compute the Cramér-Rao bounds for the joint es-
timation of the position and the radiation pattern of a source. Exact
results are obtained in a simplified setting. It is shown that not only
the variance of the position estimator increases with the complexity
of the source, but also that a mismatch between the radiation model
and the actual source (i.e. when the model is more complex than
the source) makes the Fisher information matrix of the estimation
problem singular. This last result is proved in the general case.

1.1. Previous works

The radiation pattern is explicitly taken in account in some EEG
localization methods. In particular, Cramér-Rao bounds for the lo-
calization of current dipoles in the skull are given in [6]. Results are
however limited to pure dipoles.

Several papers have recently appeared on acoustic source local-
ization in reverberant rooms [7, 8, 9, 10]. While these papers deal
with the reverberation (known or unknown), no method is given to
deal with anisotropic radiation patterns. Such radiation patterns are
expected for a large number of type of sources (human voice, mu-
sical instruments, aerodynamic noise, etc.), and the geometry of the
problem (sensors close to the sources, reverberation) makes the usual
assumption of monopolar source irrelevant. The method introduced
in [8] is also applied to EEG. The authors suggest to approximate a
dipole as the sum of two close out-of-phase monopoles. However,
as the space is discretized on a regular grid, only dipole aligned with
the axes can be approximated as a sum of two monopoles, making
the interpretation of the results difficult.

MUSIC-type algorithms are introduced in [3, 4]. Some condi-
tions on the number of measurements and snapshots are given in [4],
however, the variance of the estimators is not considered.
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1.2. Structure of the paper

The physical source model is introduced in section 2. Values of the
Cramér-Rao bounds for some special cases of sources and measure-
ment setups, as well as a general result on the invertibility of the
Fisher matrix of the estimation problem are given in section 3. Sim-
ulation results are discussed in section 4, and concluding remarks
are given in section 5.

2. SOURCE MODEL

The field radiated by a source at the origin can be decomposed as
a sum of multipoles [11]. The multipoles are the solutions of the
Helmholtz equation with a Dirac, or a high order derivative of a
Dirac, as right-hand side. The multipole of order (l,m) (with |m| ≤
l) is given in spherical coordinates by:

Slm(r, θ, φ) = Ylm(θ, φ)hl(kr)

where Ylm is the spherical harmonic of order (l,m), hl is the spher-
ical Hankel function of order l (Definitions and properties of the
Bessel and Hankel functions are found in [12]) and k the wavenum-
ber. In particular, the multipole of order (0, 0) is the well known
Green function S00(r, θ, φ) = eikr

r
. In the 2D case, the multipole

of order l has the simple expression in polar coordinates

Sl(r, θ) = eilθHl(kr)

where Hl is the cylindrical Hankel function of order l.
A source is described by the coefficients alm (or al) of its expan-

sion in the family of multipoles. The field u radiated by the source
(in 3D or 2D) is decomposed as:

u(r, θ, φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, φ)hl(kr)

u(r, θ) =

∞∑
l=−∞

ale
ilθHl(kr).

From now on, for the sake of simplicity, only 2D sources will be
considered. As the results described in this paper are based on prop-
erties that are shared by 2D and 3D multipoles (expression of the
derivative of a multipole of order n as a sum of multipoles of or-
der n − 1 and n + 1, as well as the Graf theorem [13]) and not on
their exact expressions, the results can be readily applied to the 3D
setting.

Here are some examples of sources (if unspecified, al is assumed
to be zero)[11]:

• a0 6= 0: monopolar, omnidirectional source.
• |a1| = |a−1| 6= 0: figure-of-eight radiation pattern. Its ori-

entation depends on the relative phase between a1 and a−1.
• |a1| = |a−1| = |a0|/2 6= 0, cardioid radiation pattern.
• |a2| = |a−2| 6= 0: quadrupolar pattern.

More complex models include musical instruments, Yagi antennas,
scattering by an object, etc, where higher order multipoles are in-
volved. In the following section, a subset of multipoles will be used
to describe a source and estimate its position, and the amplitudes of
the chosen multipoles.

3. CRAMER-RAO BOUNDS

Given a quantity to be estimated, the Cramér-Rao bounds give a
lower bound for the variance of any unbiased estimator of this quan-
tity. They are obtained by inverting the Fisher information matrix
(FIM). Assuming that the measurements are corrupted by a centered
white Gaussian noise of variance σ2, the terms of the FIM are given
by

Fij =
1

σ2
Re

∂m

∂θi

H ∂m

∂θj

where m is the vector of the values of the field radiated by a source
to the sensors in function of the parameters θi (position and am-
plitudes), i.e. u(r, θ) sampled at the sensors positions. ·K denotes
conjugate transpose.

3.1. Simplifying assumptions

To avoid overcomplicated computations and allow a simple inter-
pretation of the results, simplifying assumptions will be made for
the computation of the Cramér-Rao bounds. We will consider a uni-
formly sampled circular array of N sensors, with the sources placed
at the center of the array. For coefficients al nonzero up to |l| ≤ Lans
a sufficient number of sensors N ≤ 2L + 3, multipoles are orthog-
onal, yielding simple expressions for the coefficients of the Fisher
information matrix.

In the following, the squared magnitude of a complex number
a = ar + iai will be denoted with an upper case letter A = a2r + a2i
(similar notations will be used for B and C).

3.2. Monopolar source

In the monopolar case, the source is describe by the real part ar and
imaginary part ai of its amplitude, and its position (x, y). the FIM
writes

F =
N

σ2


h0

h0

k2Ah1/2
k2Ah1/2


 ar
ai
x
y

 .
The Cramér-Rao bound for the estimation of the position of the

source is thus

CRBx = CRBy =
2σ2

ANk2
1

h1
.

3.3. Pure dipole

A pure dipole is described by six parameters: the coefficients of the
multipoles of order −1 and 1 (ar , ai, br , bi), and its position:

u(r, θ) = (ar + iai)e
−iθH−1(kr) + (br + ibi)e

iθH1(kr).

The FIM for the parameters ar , ai, br , bi, x, y is a block diagonal
matrix:

F =
N

σ2

(
h1I4

k2Fxy/4

)
where

Fxy =(A+B)(h0 + h2)I2

+ 2h0

(
−arbr − aibi −arbi + arbi
−arbi + arbi +arbr + aibi

)
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and In is the n × n identity matrix. In the particular case where
a = b is real (i.e. the dipole is oriented along the y axis and the FIM
is diagonal), the Cramér-Rao bounds for the position writes

CRBx =
2σ2

ANk2
1

h2

CRBy =
2σ2

ANk2
1

2h0 + h2
.

For large r, where |H0(kr)| ≈ |H1(kr)|, we get

CRBx ≈ 3CRBy.

A physical interpretation can be given for this difference in variance
in the two directions. If the dipole is moved along the x direction, no
change is measured by the sensors on the x axis, while only a small
amplitude change is measured by sensors on the y axis. However, if
is moved along the y axis, the power received by the sensors on the x
axis increases, while the displacement on the y axis implies a phase
change on the sensors near the y axis, where the power is maximal
and thus less sensible to noise. As a displacement along the y axis
modifies the received field on the sensors more than a displacement
along the x axis, estimation of the position along y is potentially
better.

3.4. Higher order sources

Higher orders (quadrupoles, octopoles, and more) are described by:

u(r, θ) = (ar + iai)e
−ilθH−l(kr) + (br + ibi)e

ilθHl(kr)

with l > 1. They yield a diagonal Fisher information matrix, and
a Cramér-Rao bound of valueσ2k2/(N(A + B)hl+1) for x and y
positions. In contrast to the dipole case, higher order sources have
equal Cramér-Rao bounds for the two directions.

3.5. Mixture of monopole and dipole

Some sources (e.g. human voice, cardioid loudspeakers, etc.) are
described by a mixture of a monopole and a figure of eight dipole:

u = (ar+iai)e
−iθH−1(kr)+(br+ibi)H0(kr)+(cr+ici)e

iθH1(kr).

In this case, depending on the amplitudes of the multipoles describ-
ing the source, off-diagonal coefficients appear in the FIM, coupling
the position and the amplitudes. These couplings have important
consequences on the FIM.

If the source is actually a pure monopole (i.e. if the amplitudes
of the dipoles are both zero), the FIM is singular. A singular FIM
implies that no unbiased estimator with finite variance exists [14].

If the source is a pure figure-of-eight dipole (i.e. A = C and
B = 0), this coupling implies that the Cramér-Rao bounds in x and
y direction are equal:

CRBx = CRBy =
2σ2

ANk2
1

h2

yielding a larger position estimation error than estimation using a
dipole only model.

Similar results are obtained for a mixture of monopole, dipoles
and quadrupoles, i.e. that compared to a pure quadrupolar model,
variance is increased for a pure quadrupole source, and that the FIM
is singular if the source does not radiate a quadrupole.

3.6. A general result

The main result of the study of the Cramér-Rao for the particular
cases exposed above is the fact that the FIM is singular in the cases
where the model is more complex than the source, i.e. that multi-
poles of orders L are included in the model while the source does
not radiates energy for these multipoles.

This property of the FIM is not limited to these simple cases.
Given a combination of multipoles

u =

L∑
l=−L

ale
ilθHl(kr),

we have

∂u

∂x
=
k2

2

L∑
l=−L

al(e
i(l−1)θHl−1(kr)− ei(l+1)θHl+1(kr)).

and
∂u

∂al
= eilθHl(kr).

In the case where a−L = aL = 0, the spatial derivative is a linear
combination of the amplitude derivatives, implying that the corre-
sponding column of the FIM is a combination of the columns asso-
ciated to the amplitudes. In this case, the FIM is singular. A identical
result is obtained for the position y.

4. SIMULATION RESULTS

In this section, simulation results corresponding to the particular
cases exposed above are given. Sources are located by the maximum
likelihood estimator. The position with the higher likelihood is such
that the angle between the measurements and the space spanned the
elementary sources centered at that point is minimum (in the case of
a simple, monopolar source, it is similar to taking the maximum of a
standard beamformer output).

We consider a circular array of 10 sensors, uniformly located on
a circle of radius 10m. Two sources, a monopole and a dipole, are
considered, at frequency 1kHz.

Results are given for the estimation of the position of a monopo-
lar and a dipolar source, for increasingly complex models. In the
different models, the amplitudes of the elementary sources are one,
and the variance of the noise σ2 is constant. This yields different
values of the SNR for the different models.

These simulations highlight the effect of an overestimation of
the model order, where the FIM is singular:

• the variance of the estimation of the position is increased,

• the probability density of the estimation lies around a circle
of increasing radius with increasing order, and is low at the
actual position of the source,

• the estimation of some parameters is biased, e.g. the ampli-
tude of a pure monopole using a monopole+dipole model.

4.1. Monopole

Figure 2 show the scatter plot of the estimated x position of a source
located at the center of the sensor array, for 3 different source mod-
els:

• monopolar source,
• mixture of monopole and dipole,
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Fig. 2. Estimations of the position of a monopole using models of
increasing complexity.
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Fig. 3. Histogram of the estimation of the amplitude for a monopole,
using a monopole + dipole model. True amplitude indicated by the
vertical line.

• mixture of monopole, dipole and quadrupole.

with SNR = 17dB. The variance of the estimated x position is clearly
increasing with the complexity of the model. It is also shown that for
complex models, the estimation position lies on a circle of diameter
increasing with the complexity.

Figure 3 shows an histogram of the estimation of the real part of
the amplitude of the monopole for the monopole + dipole model. In
coherence with the fact than the FIM is singular, a large estimation
bias is visible.

4.2. Dipole

Similarly, the position of a dipole located at the center is estimated
with three different models : pure dipole model, and the same mix-
ture models used above, with SNR = 20 dB. Results are pictured on
figure 4. For the pure dipole model, the anisotropy of the estimation
error is clearly seen. Also visible is the increasing estimation vari-
ance with increasing complexity, and estimated position lying on a
circle for the last case, where the FIM is singular.

4.3. Mixture of monopole and dipole

Finally, figure 5 shows the results of the localization of a mixture of
monopole and dipole (with a = b = c = 1), for a monopole+dipole,
and a monopole+dipole+quadrupole model. Also visible here is the
estimated position lying on a circle for the dipole+quadrupole model,
where the FIM is singular.

Fig. 4. Estimation of the position of a dipole using models of in-
creasing complexity.

Fig. 5. Estimation of the position of a mixture of monopole and
dipole using models of increasing complexity.

4.4. Physical interpretation

The increased variance with increasing complexity of the model is
a consequence of the Graf addition theorem. This theorem gives
an expansion of a multipole at a given position as a sum of multi-
poles at a different position. For small distance between this posi-
tion and the actual position, the terms of degree larger than 1 can
be neglected, and a monopole at the center is very similar to an
off-centered monopole + dipole with appropriate amplitudes. In-
cluding quadrupoles improves the approximation to larger distances,
explaining the increasing variance with increasing approximation or-
der. The circular shape of the scatter plot of the estimation is how-
ever yet to be explained.

5. CONCLUSION

Cramér-Rao bounds for anisotropic sources localization were de-
rived. In particular, it was shown that the variance of the estima-
tion position increases with the complexity of the model, and that,
in general, the Fisher information matrix is singular when the model
is more complex than the source to be localized. A good match be-
tween the source and the model is therefore crucial to ensure good
localization performances, as a mismatch does not only implies a
larger variance of the estimated positions, but also the impossibility
of an unbiased estimation with finite variance.
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