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ABSTRACT

In this contribution an improved approach for indoor lo-
calization based on low cost Bluetooth Low Energy (BLE)
systems is proposed. The measured Received Signal Strength
Indicator (RSSI) values, which are available in Bluetooth
systems anyway, are used for localization. It is well-known
that localization based on RSSI measurements can only be
achieved with a limited accuracy when applying these values
directly to respective path loss models. Therefore additional
signal processing is performed on the RSSI values and an
auto-calibration approach is proposed, which takes inconsis-
tencies with respect to environmental textures into account.
The respective model parameters can be thus matched and
updated in regular intervals. Further improvements are ob-
tained by performing distance estimation in both directions,
namely from transmitter to receiver and vice versa. Further-
more a sophisticated post processing of the RSSI values is
performed. Compared to established RSSI-based localization
methods based on low-power, low-cost systems, the localiza-
tion accuracy has been significantly improved by applying the
proposed methods. This is verified by measurements using
an experimental setup.

Index Terms— Indoor localization, BLE, RSSI

1. INTRODUCTION AND RELATED WORK

A large number of different Indoor localization methods are
described in the literature and some of them are already im-
plemented in commercial products. None of them however
fulfills all requirements with respect to low cost, low power,
fast tracking, reliability and sufficient accuracy at the same
time. Most of the methods proposed can be either classi-
fied as a range-free or a range-based localization approach.
Whereas the former is associated with significant inaccura-
cies with respect to location estimation, the latter can provide
a higher precision. Range-based localization in wireless sen-
sor networks is based on the idea of receiving and processing
signals from fixed nodes and using the respective measure-
ment values for estimation of the mobile node location [1, 2].
A very high accuracy can be achieved by approaches based
on Time Of Arrival (TOA) and Time Difference Of Arrival

(TDOA) techniques. For these methods however a strict time
synchronization of the entire wireless network is required,
which makes the implementation costly and thus not suitable
for deployment in systems we are looking at [3]. When us-
ing the Angle of Arrival (AOA) method additional hardware
is required in the receiver in order to calculate the relative
orientation based on the measured arrival direction [4]. Thus
implementation costs and power consumption of the receiver
are increased.
A very simple method for localization is based on the idea
of applying the measured RSSI values, which are available
in the receiver anyway, also for localization. Since no ad-
ditional hardware and no time synchronization is required in
this case, this approach is simple, fast and very cost effective.
RSSI based localization methods can be subdivided into al-
gorithms based on fingerprinting and algorithms based on a
model of the signal propagation path. Both methods are used
in localization based e.g. on Wi-Fi systems [5].
Fingerprinting is known as an accurate but time consuming
method for localization. Algorithms based on this method
are carried out in two phases commonly known as the offline
and the online phase. The location subject to analysis is di-
vided into rectangular grids. Reference RSSI values corre-
sponding to these grids are gathered during the offline phase,
whereas the location estimation is carried out in the online
phase. In [6] an indoor positioning approach for a Bluetooth
network using fingerprinting is presented. Inconsistencies in
the measured RSSI values are removed by an additional gra-
dient filter. According to the authors, the maximum devia-
tion of the estimated from the exact position was 2.67m us-
ing this method. This seems to be a rather modest result for
the time consuming and complex fingerprinting technique. In
[7] a BLE indoor positioning method is proposed which uses
Gaussian filtering for processing the RSSI values and least
squares based piecewise fitting for online training. Applying
this method the maximum deviation of the estimated position
from the exact one was smaller than 1.5m in 80% of the cases.
In [8] a comparison of indoor localization based on Wi-Fi and
Bluetooth Low Energy systems is presented. Again finger-
printing was applied as the technique used for localization.
Based on the Wi-Fi system in 95% of the cases the devia-
tion of the estimated from the exact position was smaller than
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Fig. 1. Measurement configuration with base stations BS1 to
BS3 and mobile sensor MS to be localized. D12, D13 andD23

are the distances between the base stations, and ds1, ds2 and
ds3 are the distances between the MS and the base stations.

8.5m. When using the BLE system the deviation was reduced
to less than 2.6m in 95% of the cases. The improved accuracy
of the BLE based localization can be explained by the greater
density of beacons (19 beacons) and the faster beaconing rate.
Further fingerprinting techniques are presented in [9].
The iBeacon protocol developed by Apple Inc. can be also
used for indoor localization as has been shown e.g. in [10].
This technology was already announced in 2013 on the World
Wide Developers Conference (WWDC) and the protocol also
works with Bluetooth Low Energy. This approach is based
on a map containing the locations subject to analysis and the
positions of the iBeacon senders. This map is created in ad-
vance. It was shown that the achieved precision in a clear line-
of-sight environment is in the range of 1m, which drops heav-
ily to 5m in the presence of obstacles. In the following it will
be shown that the accuracy of a localization algorithm can be
considerably improved by applying novel methods proposed
in this paper. The deviations from the exact positions had
been lowered to less than 0.3m in most of the cases.

2. SYSTEM CONFIGURATION AND
INITIALIZATION PHASE

The system configuration used for localization of a mobile
sensor MS is shown in Fig. 1. In order to determine its po-
sition, a MS must receive the transmitted signals from three

fixed Bluetooth stations, which are designated as BS1 to BS3
in Fig. 1. The distances between the mobile sensor and the
fixed stations BSi can be estimated from the RSSI values by
using the path loss model described e.g. in [11]. For in-
door localization following relationship between distance d
and path loss PL in dB turns out to be appropriate:

PL(d) = PL(d0) + 10γ · log10

( d
d0

)
(1)

Where d0 is the reference distance, PL(d0) is the respec-
tive path loss in dB and γ is the path loss exponent. There
have been many attempts by researchers to enhance this
model by adding further parameters obtained from measured
data. Examples can be found in [12, 13, 14]. The results
presented in this paper show however that distance estima-
tion based on (1) is sufficient when proper adjustment of the
parameters PL(d0) and γ is performed.
In the initialization phase, the first step of calibration, values
PL(d0) and γ are determined for the actual system environ-
ment. The reference distance d0 is set to 1m. Two sets of
values are determined in this phase. Set 1 represents the
reference path loss or reference RSSI values at a one meter
obstacle free distance from the mobile sensor to each of the
three fixed stations in the direction of the other two. The sec-
ond set of parameters consists of the six RSSI valuesRSSIi,j
with i = 1, 2, 3, j = 1, 2, 3 and i 6= j. RSSIi,j is the value
measured at base station j when base station i transmits a
beacon. Based on these two sets of values, the path loss
exponent γ can be determined for each base station. Solving
(1) for γ and with reference distance d0 = 1m, following
relationship is obtained:

γ =
PL(d)− PL(d0)

10 · log10(d/d0)
(2)

Note that for each path between two base stations γ is cal-
culated twice by performing measurements in both directions.
Thus six different values for γ are obtained for the configu-
ration in Fig. 1. For a better understanding of the presented
approach, we will consider in the following the determination
of the path loss exponent γ1,3 for a transmission from BS1 to
BS3. With D1,3 the distance between the two base stations
and RSSI1,3 the measured RSSI value at BS3, following re-
lationship is obtained:

γ1,3 =
RSSI1,3 − PL(d0)

10 · log10(D1,3/d0)
(3)

The path loss exponent γ3,1 for the opposite direction can
be determined respectively. The distance between the mobile
sensor and the fixed station will be then calculated twice using
these path loss values γ1,3 and γ3,1.
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3. LOCALIZATION ALGORITHM

In Fig. 1 the configuration with three base stations used for
position estimation is shown. The moving target to be lo-
calized is represented by the mobile sensor MS. The steps
involved in the localization process are explained in this sec-
tion. Since RSSI measurements are subject to noise, RF and
environmental textures, they are preprocessed before they are
used for distance calculation. This preprocessing is carried
out by optimized digital filtering and is performed in two
steps, which are called RSSI averaging and RSSI smoothing
in the following.

3.1. RSSI Averaging

During the averaging operation the received RSSI values are
weighted based on their time of arrival. More weight is placed
on newer received values compared to older ones. RSSI val-
ues which are too old are discarded. Assuming that the newest
RSSI value is received at time instant tk, the respective RSSI
average value Rsi(tk) obtained by time-based weighting of
the last n RSSI values is given by:

Rsi(tk) =

n−1∑
l=0

wl ·Rsi(tk−l) (4)

Rsi(tk−l) is the RSSI value received at time instant tk−l,
measured between a base station i and the mobile sensor MS,
and wl is the corresponding weight which is calculated by:

wl =
e−(tk−tk−l)/Tref

µ
(5)

The value µ is a factor used for normalization and ∆t =
tk− tk−l is the elapsed time between the newest value at time
instant tk and the value received at time instant tk−l. The
reference time Tref is chosen to be 1s.

3.2. RSSI Smoothing

The smoothing of RSSI values is also time-based and is per-
formed after averaging. The respective values are determined
by:

˜Rsi(tk) =
[
1− (α · (1− α)∆t/Tref

]
·Rsi(tk)

+α · (1− α)∆t/Tref ·Rsi(tk−1)
(6)

Where ∆t is the elapsed time between two measurements,
namely at time instant tk and tk−1 and α = 0.5. Due to these
averaging and smoothing operations the impact of outliers on
the localization process is very low.

3.3. Auto-Calibration

In this subsection a novel method for calibration is proposed
which results in a considerably improved localization accu-

racy. The method is based on the idea of adaptively adjust-
ing the path loss models for the different transmission paths.
Thus changes in the environmental textures can be taken into
account very rapidly. Whereas the reference path loss values
PL(d0) measured at a 1m distance from the base stations are
assumed to be constant, the RSSI values RSSIi,j measured
between the base stations can change due to room temperature
variations, frequency interferences, humidity etc. According
to (3) this results in a different path loss exponent γ1,3 and
the path loss model has to be adjusted. Thus it is proposed to
perform calibrating of the path loss in regular time intervals
in order to improve the accuracy obtained for distance esti-
mation of the target. It has been confirmed by experimental
results that the localization accuracy can be considerably im-
proved by applying this method. These experimental results
will be described in section 4.
Since each BS is equipped with a receiver, changes in the
field strength values RSSIi,j can also be detected during the
localization procedure. Packets arriving at each BSi from the
other two can be identified by the respective MAC address
contained in the received signals. The correspondingRSSIi,j
values will undergo time-weighted averaging and smoothing
and then are used for the calculation of the new path loss ex-
ponents of the corresponding path. This process of repeated
calculation of the path loss exponent for the paths between
the fixed base stations is applied simultaneously to the local-
ization procedure and is referred to by auto-calibration.

3.4. Bidirectional Distance Calculation

In this subsection another new method will be described,
which was developed for increasing localization accuracy.
Existing approaches of RSSI based distance estimation nor-
mally use signal transmissions only in one direction. Either
the fixed base stations transmit a beacon, which is received by
the target MS or conversely, the MS is used as the transmitter
and the fixed BSs are the receivers. In order to improve the
performance of the localization procedure this method is ex-
tended by performing RSSI measurements in both transmis-
sion directions and using both values for localization. Thus
the respective distance between MS and BS is estimated two
times based on different measurements and this information
can be used for improving localization accuracy. Data pack-
ets containing the RSSI value of the MS, the target subject
to localization, are identified at each BS based on their mac
address. Then an optimized filtering of these RSSI values is
performed and the distance is estimated. For a trilateration-
based localization, the position of three reference points and
the distances of the subject to be localized to these points are
needed. By applying the bidirectional distance estimation 6
values for the distances are obtained in each iteration step of
the algorithm. Thus 23 different position estimations can be
determined by the algorithm. After discarding outliers the
final position is estimated then by averaging the remaining
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values. The distance dsi between each MS, BS pair can be
estimated from the respective measured field strength value
PL(dsi) by:

dsi/m = 10
PL(dsi)−PL(d0)

10γ (7)

This relationship is obtained by solving (1) for d and with
reference distance d0 = 1m. The distances ds1, ds2 and ds3 in
Fig. 1 are estimated for both directions using this relationship.

3.5. Bidirectional Weighting Procedure

As already mentioned in section 2, distance calculation be-
tween MS and each base station BSi is performed twice based
on two different path loss exponents available for the link to
each base station. Thus two different values dsi,1/2 for the
estimated distance are obtained, which are combined by a
weighted averaging operation to the final value dsi. dsi is then
used for localization. The respective weighting operation can
be described by following relationship:

dsi =
w1 · dsi,1 + w2 · dsi,2

w1 + w2
(8)

The weights w1/2 are determined by taking the estimated dis-
tances of the MS to the respective other two base stations into
account. These are e.g. BS2 and BS3 if the link between MS
and BS1 is considered and path loss exponents γ1,2 and γ1,3

are used for distance estimation. It is assumed that distance
estimations based on larger RSSI values are more reliable.
Thus more weight is assigned to an estimated distance based
on larger RSSI values respectively.

4. EXPERIMENTAL RESULTS

The performance of the proposed algorithm was evaluated by
performing field trials with an experimental setup. The mea-
surements had been carried out in a room of size 5.6m×6.4m.
The respective experimental system configuration is shown in
Fig. 2. The three base stations have been deployed at loca-
tions with known coordinates. The exact position of the mo-
bile sensor in Fig. 2 is given by the coordinates (1.5, 1.4, 1.0).
In a first step this position was estimated without applying
the proposed methods. Distance estimation was carried out
based on the path loss exponents that had been determined
during the initialization phase. Position calculation was re-
peated at different times of the day so that not only static, but
also dynamic characteristics of the environment are taken into
account. The estimated positions were randomly scattered
around the actual position as is shown by the black triangles
in Fig. 2. It turned out that more than 90% of the calculated
positions were closer than 40cm to the real position. In a
second step the experiment was repeated under the same con-
ditions but position estimation was performed by also apply-
ing auto-calibration and bidirectional distance measurement.
Thus localization accuracy could be considerably improved

X-Axis in m

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6

Y
-A
xi
s
in
m

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
3.6
3.9
4.2

Position Estimation

BS 1
BS 2
BS 3
Real Position
Est. pos. w/o the proposed method
Est. pos. w/ the proposed method

Fig. 2. Improvement of localization accuracy by applying
the proposed method of auto-calibration and bidirectional dis-
tance measurement.

as shown by the gray stars in Fig. 2. In 95% of the cases
the maximum deviation was now smaller than 24cm. Posi-
tion estimation for other locations of the MS in the test area
confirmed the results. Only locations on the direct path be-
tween the BSs turned out to be more critical. For these cases
auto-calibration is disturbed by the MS so that the estimated
path loss exponents are not correct and the deviation of the es-
timated positions is larger. Note that the real-time capability
of the presented indoor positioning system is still maintained
after applying the methods.

5. CONCLUSION

In this contribution an enhanced positioning algorithm is pro-
posed based on RSSI measurements. The reliability of a self-
calibrating bidirectional indoor localization system based on
Bluetooth Low Energy (BLE) is investigated. Since fluctua-
tions with respect to RSSI measurements have a significant
impact on the correspondent path loss exponent and hence on
distance estimation, we proposed an auto-calibration method
which calculates the path loss exponent repeatedly and si-
multaneously to the localization process and thus takes into
account changes in the environmental texture. By applying
bidirectional distance estimation 23 different constellations
are available for position calculation by trilateration. Local-
ization accuracy in a typical BLE environment was improved
based on our proposed methods and the experimental results
confirmed the expected performance of the algorithm.
In future work and in order to further improve the positioning
accuracy, the localization process will be supported through
inertial sensors, which provide information about accelera-
tion, location and magnetic field.
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