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ABSTRACT

An important step in multi-sensor data fusion is sensor registration,
namely, to estimate sensors’ range and azimuth biases from their
asynchronous measurements. Assuming the target moves in a s-
traight line with an unknown constant velocity, we propose a two-
stage nonlinear least square (LS) approach to this problem. More
specifically, in stage I, each sensor first estimates its own range bias
individually, and then in stage II, all sensors jointly estimate their
azimuth biases. We show that both of the nonconvex LS problems
can be solved to global optimality under mild conditions. Simu-
lation results show that the root mean square error (RMSE) of the
proposed approach is quite close to the Cramér-Rao lower bound
(CRLB) when the level of the measurement noise is small.

Index Terms— Asynchronous multi-sensor registration prob-
lem, nonconvex nonlinear LS, tightness of semidefinite program (S-
DP) relaxation

1. INTRODUCTION

In recent years, there is an increasing interest in integrating stand-
alone sensors into multi-sensor systems for command, control,
and communications [1]. Instead of developing expensive high-
performance sensors, directly fusing data from existing multiple
inexpensive sensors is a more cost-effective approach to improving
the performance of tracking and surveillance system. However, the
success of fusing multi-sensors’ data requires an important process
called registration (or alignment). Sensor registration process refers
to align a set of data coming from different sensors into a common
coordinate system and compensate each sensor’s biases (or offset
errors), i.e., range and azimuth biases. Since sensors’ biases change
slowly with time, they can be treated as constants during a relatively
long period of time. The major problem involved in sensor registra-
tion process is to estimate these constant biases from data measured
asynchronously by different sensors.

Various algorithms have been proposed for solving the sensor
registration problem. These algorithms generally can be divided in-
to two categories according to the sensors’ work mode: synchronous
mode and asynchronous mode. In the synchronous work mode,
sensors simultaneously observe the target’s position, with measure-
ments from different sensors corresponding to the same (observa-
tion) time instants. Based on this assumption, many algorithms, such
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as maximum likelihood-based [2, 3, 4, 5] and LS type of algorithms
[6, 7], have been proposed for solving the registration problem in the
synchronous scenario.

However in practice, sensors usually are not synchronized in
time due to different data rates and task requirements. When work-
ing in the asynchronous mode, sensors observe the target at different
time instants, which makes sensor registration become difficult. To
overcome this difficulty, researchers have resorted to exploit the a
priori knowledge of the target’s dynamic model. For instance, sev-
eral Bayesian filtering based approaches were proposed in [8, 9, 10].
These methods utilize target dynamic model and sensor measure-
ment model to recursively update target’s states and estimate sen-
sors’ biases.

In this paper, we consider the asynchronous multi-sensor regis-
tration problem and propose a two-stage optimization approach by
assuming the a priori knowledge that the target is moving (in a s-
traight line) with a constant velocity. In sharp contrast to filtering
approaches [8, 9, 10], the proposed approach estimates biases in t-
wo separate stages. More specifically, in stage I of the proposed
approach, each sensor independently estimates its own range bias;
while in stage II, all sensors jointly estimate their azimuth biases by
solving a nonconvex Quadratically Constrained Quadratic Program
(QCQP). We show that both of the nonconvex problems in stages
I and II can be solved to global optimality under mild conditions.
Simulation results show the effectiveness of our proposed two-stage
optimization approach.

We adopt the following notation in this paper. Lower and upper
case letters in bold are used for vectors and matrices, respectively.
For a given matrixH, we denote its transpose, Hermitian transpose,
and inverse (if it is invertible) by HT , H†, and H−1, respectively.
We use xn to denote the n-th component of the vector x and xn:m

(with n < m) to denote the vector formed by components of x from
index n to index m.

2. ASYNCHRONOUS MULTI-SENSOR REGISTRATION
PROBLEM

Consider a multi-sensor system consisting ofM > 1 sensors located
distributively on a 2-dimensional plane with known positions. There
is a target moving in the surveillance space. Different sensors mea-
sure the relative range and azimuth between the target and sensors
themselves in an asynchronous work mode. For ease of notation and
presentation, measurements from different sensors are mapped onto
a common time axis at the fusion center, indexed by k. Furthermore,
we assume that, at time instant k, only one sensor observes the tar-
get and the corresponding sensor is denoted as sk ∈ {1, 2, . . . ,M}.
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Please see Fig. 1 for an illustration of the asynchronous work mode
with M = 2 sensors.

Fig. 1. An illustration of the asynchronous work mode (M = 2).

Let ξk =
[
xk, yk

]T denote the target’s position in the common
coordinate system at time instant k. Then, the measured range ρk
and azimuth φk at sensor sk are

zk ,

[
ρk
φk

]
= h−1(ξk − psk )− θsk +wk. (1)

In the above, h−1(·) is the inverse function of the 2-dimensional
spherical-to-Cartesian transformation function h(·); pm = [pxm, p

y
m]T

is the position of sensor m; θm = [∆ρm,∆φm]T denotes the range
and azimuth biases of sensor m; wk = [wρk, w

φ
k ]T is assumed to be

an uncorrelated Gaussian random noise with zero mean [11], i.e.,

wk ∼ N
(

0,

[
σ2
ρ 0

0 σ2
φ

])
.

The asynchronous multi-sensor registration problem considered
in this paper is to estimate sensors’ biases {θm}Mm=1 from the noisy
measurements {zk}Kk=1, where K is the total number of measure-
ments. However, it is generally impossible to do so only based on
measurements {zk}Kk=1. This is because the number of unknown pa-
rameters is larger than that of the measurements, i.e., we have in total
2K + 2M unknown parameters {ξk}Kk=1 and {θm}Mm=1 but in to-
tal only 2K measurements {zk}Kk=1. Fortunately, the target usually
moves in some known pattern such as with the constant velocity. By
exploiting the a priori knowledge, we can still estimate {θm}Mm=1

from measurements {zk}Kk=1. More details on this will be shown in
the next section.

3. PROBLEM FORMULATION AND PROPOSED
TWO-STAGE APPROACH

In this section, we present our LS formulations of the asynchronous
multi-sensor registration problem and propose an approach to solv-
ing the formulations. The proposed approach consists of two stages:
in stage I, each sensor uses its local measurements to estimate its
range bias independently; then in stage II, the fusion center combines
all sensors’ measurements and the estimated range biases informa-
tion in stage I together to estimate all sensors’ azimuth biases. We
shall present stage I and stage II in Sections 3.1 and 3.2, respectively.

For ease of presentation, we assume that the target moves with
an unknown constant velocity v =

[
vx, vy

]T 6= 0. Let Tk denote
the time difference between the time instants k+ 1 and k. Then, the
target’s positions at time instants k + 1 and k satisfy

ξk+1 = ξk + Tkv. (2)

Notice that Eq. (1) can be equivalently rewritten as

ξk = h(zk −wk + θsk ) + psk . (3)

We can see from (2) and (3) that measurements from different sen-
sors are connected with each other through (2). Our idea is to substi-
tute (3) into (2) and establish the LS models. To do so, we still need
to deal with the unknown noise wk in (3). To circumvent this d-
ifficulty, we introduce the so-called unbiased spherical-to-Cartesian
coordinate transformation for Gaussian noise [12]:

h̄(zk) =

[
λ−1ρk cosφk
λ−1ρk sinφk

]
, (4)

where λ = e−σ
2
φ/2 is the noise compensation factor. The unbiased

property refers to Ewk{h̄(zk)} = h (Ewk{zk}), which further im-
plies

ξk = Ewk{h̄(zk + θsk )}+ psk . (5)

We are now ready to formulate the asynchronous registration
problem and the LS formulations will be presented in Sections 3.1
and 3.2.

3.1. Stage I: Individual estimation of range bias

In this subsection, with a slight abuse of notations, we still use
{zk}Kk=1 to denote the measurements of a single sensor and
θ , [∆ρ,∆φ]T to denote its unknown range and azimuth bias-
es.

Combining (2) and (5), we can obtain the LS formulation for
estimating θ and v:

min
θ,v

f(θ,v) ,
K−1∑
k=1

‖h̄(zk+1 + θ)− h̄(zk + θ)− Tkv‖2. (6)

where ‖ · ‖ denotes the Euclidean norm. In light of (4), f(θ,v) is
a (convex) quadratic function with respect to ∆ρ and v. For any
fixed ∆φ, problem (6) can be equivalently rewritten as the following
convex quadratic program with respect to ∆ρ and v:

min
∆ρ,v

‖H∆φ

[
∆ρ
v

]
− y∆φ‖2, (7)

whereH∆φ ∈ R2(K−1)×3 and y∆φ ∈ R2(K−1) depend on the val-
ue of ∆φ and the sensor’s measurements. SupposeK ≥ 3 (such that
H∆φ is of full column rank), then the optimal solution for problem
(7) is [

∆ρ∗

v∗

]
= (HT

∆φH∆φ)−1HT
∆φy∆φ. (8)

The following Theorem 1 shows, somewhat surprisingly, that ∆ρ∗

in (8) does not depend on the choice of ∆φ and hence is optimal to
problem (6).

Theorem 1. Given any ∆φ in problem (7), problems (6) and (7)
have the same optimal ∆ρ∗ given by (8) and the same optimal ob-
jective value. However, the optimal v∗ in (8) depends on the choice
of ∆φ.

For space reason, we do not give a rigorous proof of Theorem
1 here. Instead, we give an intuitive explanation by using Fig. 2.
Without loss of generality, we set λ = 1 in Fig. 2. Given the original
measurements (green points), problem (6) aims at finding an azimuth
bias ∆φ, a range bias ∆ρ, and a velocity vector v to minimize the
matching errors (corresponding to the square sum of the length of
those black lines in Fig. 2). As shown in Fig. 2, when we rotate green
points to blue points by ∆φ or to blue circles by ∆φ′, the relative
positions of the obtained points (circles) do no change and neither
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Fig. 2. A geometrical explanation of Theorem 1.

do the optimal ∆ρ and the optimal value of problem (6). However,
the optimal velocity of problem (6) indeed changes, i.e., it changes
from v to v′ when the rotation changes from ∆φ to ∆φ′.

In summary, Theorem 1 tells us that each sensor can estimate
its range bias ∆ρ independently by solving problem (6) (or problem
(7)). However, each sensor can not estimate its azimuth bias ∆φ and
target’s velocity v independently by solving problem (6). Because
there is an ambiguity of ∆φ and v in problem (6), i.e., problem (6)
has multiple optimal pairs (∆φ,v). In view of this, we propose to
estimate the azimuth biases of all sensors together with the target’s
velocity by combining the measurements from all sensors.

3.2. Stage II: Joint estimation of azimuth biases

In stage II, we assume that all sensors’ range biases have already
been estimated in stage I, denoted by ∆ρ∗m,m = 1, . . . ,M . Now,
we estimate all sensors’ azimuth biases and target’s velocity jointly
by combining all sensors’ measurements.

We continue with the LS model in stage I to estimate all sensors’
azimuth biases ∆φ = [∆φ1, . . .∆φM ]T and target’s velocity v,
while assuming ∆ρm has been fixed (m = 1, 2, · · · ,M ):

min
∆φ,v

K−1∑
k=1

‖gk+1

(
∆φsk+1

)
− gk (∆φsk )− Tkv‖2, (9)

where

gk(∆φsk ) , h̄

(
zk +

[
∆ρ∗sk
∆φsk

])
+ psk . (10)

The difference between problems (9) and (6) lies in that the mea-
surements from all sensors are used in (9) while the measurements
from a single sensor are used in (6).

To solve problem (9) efficiently, we first give its equivalent com-
plex QCQP reformulation as follows:

min
x∈CM ,v∈C

‖Hx− tv + c‖2

s.t. |xm|2 = 1, ∀m,
(11)

where xm denotes the unknown azimuth bias of sensor m in the
sense that ∆φm = ∠xm (∠xm represents the phase of xm), and
complex scalar v = vx + jvy represents the unknown constant ve-
locity. In (11), matrix H ∈ C(K−1)×M are determined by sen-
sors’ measurements {zk}Kk=1, observation order {sk}Kk=1 and those
fixed {∆ρ∗m}Mm=1; t ∈ RK−1 relates to time differences {Tk}K−1

k=1 ;
c ∈ CK−1 is determined by sensors’ positions {pm}Mm=1. Detailed
forms of the above parameters are omitted due to space limitation.

Problem (11) is an unconstrained quadratic program with respect
to v. Its closed-form solution is given by

v = (t†t)−1t†(Hx+ c). (12)

Plugging (12) into (11), we get

min
x∈CM

‖PHx+ Pc‖2

s.t. |xm|2 = 1, ∀m, (13)

where P = I − tt†/‖t‖2.
Problem (13) is a non-convex QCQP, and such class of problems

is known to be NP-hard in general [13]. One efficient convex relax-
ation technique for solving such class of problems, SDP relaxation,
has shown its effectiveness in signal processing and communication
communities [14]. We also apply the SDP relaxation technique to
solve problem (13). To do so, we reformulate problem (13) in a
homogeneous form as follows:

min
x∈CM+1

x†Cx

s.t. |xm|2 = 1, ∀m,
(14)

where

C =

[
H†PH H†Pc
c†PH 0

]
.

It is simple to show that problems (13) and (14) are equivalent in the
sense that x∗ ∈ CM+1 is the optimal solution for problem (14) if
and only if x∗1:M/x

∗
M+1 ∈ CM is the optimal solution for problem

(13).
The SDP relaxation of problem (14) is

min
X∈HM+1

Tr(CX)

s.t. Diag(X) = 1,

X � 0,

(15)

where HM+1 denotes the set of (M + 1) × (M + 1) Hermitian
matrices, Tr(·) is the trace operation, and Diag(X) represents the
vector formed by all diagonal elements of matrix X . Problem (15)
can be efficiently solved by the interior-point algorithm [15]. If the
optimal solution X∗ for problem (15) is of rank one, i.e., X∗ =
x∗(x∗)†, then the optimal solution for problem (9) is obtained as
follows:

∆φ∗m = ∠
x∗m
x∗M+1

, m = 1, · · · ,M, (16)

and

v∗ = (t†t)−1t†(H
x∗1:M

x∗M+1

+ c). (17)

The following result shows that problem (15) has a rank-one solution
under mild conditions.

Theorem 2. If the level of the measurement noise is sufficiently s-
mall, problem (15) always has a unique solution that is rank one. In
other words, the azimuth biases can be estimated by solving a convex
SDP.

The proposed two-stage optimization approach for the asyn-
chronous multi-sensor registration problem is summarized as Algo-
rithm 1.

Based on Theorems 1 and 2, we have the following corollary for
Algorithm 1.
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Algorithm 1 The Proposed Two-Stage Approach

Input: Measurements {zk}Kk=1 collected by all sensors
Stage I: Each sensor estimates its own range bias by (8), and ob-
tain ∆ρ∗m, m = 1, 2, . . . ,M .
Stage II: Solve SDP (15) to obtain X∗ = x∗(x∗)† and extract
{∆φ∗m}Mm=1 and v∗ by (16) and (17), respectively.

Output: Estimated biases {θ∗m}Mm=1 and velocity v∗

Corollary 1. In the absence of the measurement noise, Algorithm 1
exactly recovers the true {θm}Mm=1 and v.

Now we make some remarks on applying the proposed algo-
rithm to solve a special class of the problem without measurement
noise. In this case, solving the sensor registration problem is equiv-
alent to solving a set of nonlinear equations (1) and (2). Corollary 1
shows that our proposed Algorithm 1 is able to exactly solve these
equations. This exact recovery property makes our proposed algo-
rithm sharply different from the existing ones [1, 2, 3, 4, 5, 7, 8],
since they use the first-order approximation to handle nonlinearity in
the registration problem while our proposed algorithm circumvents
the nonlinearity difficulty by exploiting the special structure of the
problem, like the hidden convexity in problems (6) and (9).

4. NUMERICAL SIMULATION

In this section, we present some simulation results to evaluate the
effectiveness of the proposed approach (Algorithm 1). Consider
a scenario with 3 sensors and a target moving with velocity v =[
180, 0

]T m/s starting from position
[
−9, 0

]T km. Each sensor ob-
serves the target every 10 seconds with different initial time. The
observation lasts 97 seconds in total and each sensor has 10 mea-
surements. Other details of the simulation setup are listed in Table
1. In our numerical simulation, SDP (15) is solved by CVX [16] and
it is observed that the obtained solution is always rank one.

Table 1. Simulation setup.
Position Initial Time ∆ρ ∆φ

Sensor 1 [−5,−5]T km 0 s 1500 m −2◦

Sensor 2 [5,−5]T km 3.5 s −800 m 2◦

Sensor 3 [0, 5]T km 7 s −1000 m 3◦

We first give the simulation results in the absence of measure-
ment noise. In this case, sensors’ biases are exactly estimated by the
proposed approach (with the numerical error being less than 10−9).
As shown in Fig. 3, those asynchronous measurements are aligned
to the ground truth positions after registration process. This vali-
dates the exact recovery property (in Corollary 1) of the proposed
approach in the absence of the measurement noise.
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Fig. 3. Asynchronous measurements before and after registration.

In the next, we evaluate the performance of the proposed ap-
proach under different levels of the measurement noise. The RMSE
is adopted as our measure and we use the well known CRLB [17]
as our benchmark. These results are obtained by averaging over 100
Monte Carlo runs. Figs. 4 and 5 plot RMSEs of the proposed ap-
proach with different σρ and σφ. From Figs. 4 and 5, we can observe
that RMSEs of our proposed approach are quite close to the CRLBs
when the level of the measurement noise is small, which demon-
strates the effectiveness of the proposed approach.
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Fig. 4. RMSEs of sensors’ range biases with different σρ and σφ.
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Fig. 5. RMSEs of sensors’ azimuth biases with different σρ and σφ.

5. CONCLUSION

In this paper, we proposed a two-stage (optimization) approach to
solving the asynchronous multi-sensor registration problem. We
gave two nonlinear LS formulations of the problem (in two stages)
by exploiting the a priori knowledge of the target’s dynamic model
and showed that both of the LS problems can be solved efficiently
and globally under mild conditions. Numerical results demonstrate
the effectiveness of our proposed approach.
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