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ABSTRACT
When noise is directional instead of diffuse, the majority of conven-
tional direction of arrival (DOA) estimation techniques suffer from
performance degradation because of mismatched noise models. In
this paper, a novel robust DOA estimation algorithm is developed
as an initial investigation into DOA estimation of speech under di-
rectional non-speech interference (DNSI) and non-directional back-
ground noise (NDBN) using an acoustic vector sensor (AVS), a com-
pact co-incident microphone array. Specifically, by defining an inter-
sensor data ratio model in the bispectrum domain (BISDR), the re-
lationship between the BISDR and the speech DOA cues are de-
rived. By recursively estimating a priori local signal-to-interference
ratio of the bispectrum (B-PriLSIR), a robust speech-dominated bi-
nary mask (SDBM) is estimated and thus the speech DOA cue is faith-
fully extracted. Experimental results with simulated and recorded data
demonstrate that the proposed algorithm offers high DOA estimation
accuracy for all angles and is robust against DNSI and NDBN.

Index Terms— direction of arrival estimation, acoustic vector
sensor, directional interference, bispectrum, binary mask estimation

1. INTRODUCTION

The direction of arrival (DOA) estimation in an adverse acoustic en-
vironment with surrounding noise has attracted considerable attention
due to its wide range of realistic applications such as video conferenc-
ing and service robots localizing the speech source swiftly and accu-
rately utilizing compact microphone arrays [1].

The noise may be non-directional (e.g. due to ambient sounds) or
directional (e.g. from an interfering source). Existing research shows
that the majority of conventional DOA estimation methods [2–6] have
been developed under the assumptions that the received noise signals
are just non-directional background noise (NDBN). However, in the
practical applications, such assumptions may not be realistic and such
a model mismatch will degrade the DOA estimation performance.

In existing research investigating DOA estimation in the pres-
ence of directional non-speech interference (DNSI), the approach by
Nishiura assumes DNSIs to be regular sources, and thus solves the
problem in the framework of multi-source DOA estimation [7]. How-
ever, this solution requires knowledge of the source number which is
often unknown in advance in a real environment. Furthermore, ad-
ditional effort must be paid to differentiate the speech sources and
DNSIs, which is also a difficult task. In [8], a frequency weighting is
devised for selecting only speech frequency bands so as to improve the
robustness against DNSI. Particularly, derivation of features or cues
are required to estimate the DOA. However, for such a frequency do-
main formulated approach, if the DNSI has a flat frequency distribu-
tion, the DOA cues in the frequency domain will be more likely sup-
pressed by the noise, thereby making the DOA estimation less robust.
Besides, such an approach often utilizes an array of microphones with
a large aperture and presents limits in space-constrained applications.

In our previous work [9], a high resolution speaker DOA esti-
mation algorithm was developed when DNSI and NDBN both exist
using a single acoustic vector sensor (AVS). The AVS is an attractive
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solution for mobile speech applications [10, 11] due to its compact
size but ability to accurately record 3D sound without spatial aliasing
compared to commonly used scalar sensor arrays [12,13]. By deriving
an inter-sensor data ratios model in the bispectrum domain termed as
BISDR, we can extract the DOA information of a speaker while at the
same time suppress the unwanted DNSI. As an indicator of the higher
order statistics (HOS) of a signal, bispectrum of the Gaussian pro-
cess is always zero [14]. In particular, the bispectrum distribution of
speech and non-speech signals are different, which means in the bis-
pectrum domain, most of the speech DOA cues will not be suppressed
by DNSI or NDBN [15]. Through analyzing the property of BISDR,
the DOA estimation problem is formulated as extracting the reliable
speech DOA-related information from the BISDR. Then, a mask is
taken to select the speech dominated points in the large-amplitude ar-
eas of the bispectra through observation. However, the performance is
sensitive to the mask threshold and the kind of interference.

In this paper, we propose a more sophisticated approach to
generate the mask to extract the speech DOA cues. A decision-
directed method is proposed to derive a speech-dominated binary
mask (SDBM) by recursively estimating the a priori local signal-to-
interference ratio of the bispectrum (B-PriLSIR). Thus, it has a few
advantages such as more robustness to the interference. Intensive ex-
periments using various kinds of simulated conditions and recorded
data have been carried out to corroborate the effectiveness and robust-
ness of the proposed method.

Notation: Throughout the paper, superscripts T and ∗ represent
the matrix or vector transpose and convolution, respectively.

2. DATA MODEL

Generally an AVS is a compact microphone array containing an omni-
directional pressure sensor (o-sensor) collocated with three orthogo-
nally oriented pressure gradient sensors (named as u-, v-, w-sensor,
respectively). So it is inherently capturing more information than even
a few microphones. Supposing there is one speech signal s(k) imping-
ing upon the AVS unit with the DOA of (θs,φs) in which the elevation
angle θs∈ (0◦,180◦) and the azimuth angle φs∈ [0◦,360◦), its associ-
ated manifold vector is given by [5]:

a(θs, φs) ≡ [us, vs, ws, 1]T , a ∈ R4×1 (1)
where the elements us, vs, ws are the x-, y-, z-axis direction cosines,
respectively. They can be determined according to the unit geometry,
which is derived as follows:

us = sin θs cosφs, vs = sin θs sinφs, ws = cos θs (2)
We assume the NDBN is zero-mean additive white Gaussian noise

(AWGN) and there is one source of DNSI. Thus the data captured by
AVS at time k can be generally expressed as

x(k) = a(θs, φs)s(k) ∗ hs(k) + a(θr, φr)r(k) ∗ hr(k) + n(k) (3)
where x(k)=[xu(k),xv(k),xw(k),xo(k)]T represents the output of
the u-, v-, w-, and o-sensor, respectively; s(k) is the speech signal
with DOA (θs, φs) and the room impulse response hs(k), the cor-
responding manifold vector a(θs,φs) = [us,vs,ws,1]T ; r(k) is the
DNSI signal assumed uncorrelated to s(k), with DOA (θr, φr) and
the room impulse response hr(k), the corresponding manifold vec-
tor a(θr,φr)= [ur,vr,wr,1]T ; n(k)= [nu(k),nv(k),nw(k),no(k)]T
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denotes AWGN at the u-, v-, w-, and o-sensor, respectively.
The data model of the directional l-sensor (where, for simplicity, l

refers to u,v,w for compact presentation purpose) and o-sensor in (3)
can be respectively further expressed as:

xl(k) = lss(k) ∗ hs(k) + lr(k)r(k) ∗ hr(k) + nl(k) (4)
xo(k) = s(k) ∗ hs(k) + r(k) ∗ hr(k) + no(k) (5)

3. PROPOSED DOA ESTIMATION METHOD

3.1. Bispectrum Domain Representation

In this subsection, we will derive the AVS data model in bispectrum
domain.

As the nl(k) and no(k) are zero-mean Gaussian, their bispectra
are identical to zero. Under the assumption that s, r and n are uncorre-
lated with each other, and sh(k)=s(k)∗hs(k), rh(k)=r(k)∗hr(k), ac-
cording to the derivation in [16], the cross-bispectrum between xl(k)
and xo(k) and the bispectrum of xo(k) can be expressed as:
Bxoxlxo(Ω1,Ω2) = lsBshshsh(Ω1,Ω2)+lrBrhrhrh(Ω1,Ω2) (6)
Bxoxoxo(Ω1,Ω2) = Bshshsh(Ω1,Ω2)+Brhrhrh(Ω1,Ω2) (7)

where Bshshsh(Ω1,Ω2) is the bispectrum of sh(k) with the corre-
sponding manifold vector component ls (where ls refers to us, vs, ws,
respectively). Similarly, Brhrhrh(Ω1,Ω2) is the bispectrum of rh(k)
with the corresponding manifold vector component lr (where lr refers
to ur, vr, wr , respectively).

Note that the first terms in (6) and (7) are only related to the speech
source, and the second terms are only related to the DNSI.

3.2. Bispectrum Inter-Sensor Data Ratio (BISDR)

Following the derivation of the sensor data ratio idea of [5], in this
subsection, we define the BISDR of the AVS in the bispectrum domain
as follows:
Ilo(Ω1,Ω2),Bxoxlxo(Ω1,Ω2)/Bxoxoxo(Ω1,Ω2), l=u,v,w (8)

where Ilo(Ω1,Ω2) is termed as the BISDR between l- and o-sensor.
Substituting (6) and (7) into (8) gives

Ilo(Ω1,Ω2) =
lsBshshsh(Ω1,Ω2) + lrBrhrhrh(Ω1,Ω2)

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

=
ls[Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)]

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

+
lrBrhrhrh(Ω1,Ω2)− lsBrhrhrh(Ω1,Ω2)

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

(9)

To simplify (9), rewrite it as follows:
Ilo(Ω1,Ω2) = ls + εl(Ω1,Ω2) (10)

the second term in (10) is the residual term given by

εl(Ω1,Ω2) =
lr − ls

1 +Bshshsh(Ω1,Ω2)/Brhrhrh(Ω1,Ω2)
(11)

From (10), the compact expression of BISDR can be written as:
I(Ω1,Ω2) = b(θs, φs) + ε(Ω1,Ω2) (12)where

I(Ω1,Ω2) = [Iuo(Ω1,Ω2), Ivo(Ω1,Ω2), Iwo(Ω1,Ω2)]T (13)

b(θs, φs) = [us, vs, ws]
T (14)

ε(Ω1,Ω2) = [εu(Ω1,Ω2), εv(Ω1,Ω2), εw(Ω1,Ω2)]T (15)
Obviously, the first term b(θs,φs) in (12) is just the compact

expression of the speech direction cosines in the manifold vector
a(θs,φs), and we refer to “speech DOA cue”.

Ideally, to obtain the speech DOA cue from I(Ω1,Ω2) in (12),
the unwanted residual term ε(Ω1,Ω2) is supposed to be zero. Ana-
lyzing (11), note that if we find the (Ω1g,Ω2g) (termed as frequency
points, FPs) where Bshshsh(Ω1g,Ω2g)/Brhrhrh(Ω1g,Ω2g)�1, then
ε(Ω1g,Ω2g) approaches zero. Besides, it is obvious that the speech
DOA cue is possible at the FPs where the value ofBshshsh(Ω1g,Ω2g)

is large. Accordingly, these speech FPs with high local speach-to-
interference ratio can be termed as HLSIR-SFPs, where the speech
DOA cue can be faithfully obtained. With the discussion above, the
remaining task is to determine these HLSIR-SFPs properly.

3.3. Speech Dominated Binary Mask (SDBM) Estimation

The binary masking technique is one of the efficient techniques for
extracting the HLSIR-SFPs, where a metric is used to judge whether
or not the FP is speech dominated. In this subsection, we will propose
a dual strategy to estimate a SDBM in bispectrum domain.
Step 1: Estimation of HLSIR mask.

Our idea is triggered by the decision-directed a priori SNR esti-
mator proposed by Ephraim and Malah for speech amplitude estima-
tor [17] where a ratio between the short-time spectral component of
speech and noise is defined and updated on the basis of a previous
amplitude estimate.

Considering that the HLSIR-SFPs in this study are analogous to
the FPs with high values of the ratio between the amplitude bispectrum
component of speech and DNSI, we make an effort to estimate the
SDBM with a similar a priori SIR estimator.

Since we work with the AVS, there are four channel signals that
can be manipulated to design the mask. From (6) and (7), the speech
bispectrum components in Bxoxlxo(Ω1,Ω2) and Bxoxoxo(Ω1,Ω2)
differ only up to a scale factor ls. Therefore, these speech compo-
nents have the same distributions in the amplitude bispectrum. Sim-
ilarly, so do the DNSI components. As a result, if an amplitude bis-
pectrum FP for o−sensor of AVS Bxoxoxo(Ω1,Ω2) is HLSIR-SFP,
the corresponding FP for the other three sensors Bxoxlxo(Ω1,Ω2)
is also HLSIR-SFP, and vice versa. In this study, we therefore take
Bxoxoxo(Ω1,Ω2) for the mask estimation. Actually, informal exper-
iments omitted for brevity also shows that Bxoxlxo(Ω1,Ω2) gives al-
most the same result.

In order to calculate the ratio between the amplitude bispectrum
component of speech and DNSI, we define the a priori local signal-
to-interference ratio of the bispectrum (B-PriLSIR) ξ(Ω1,Ω2) and
a posteriori local signal-to-interference ratio of the bispectrum (B-
PostLSIR) γ(Ω1,Ω2) as follows, respectively:

ξ(Ω1,Ω2) ,
|Bshshsh(Ω1,Ω2)|2

λr(Ω1,Ω2)
(16)

γ(Ω1,Ω2) ,
|Bxoxoxo(Ω1,Ω2)|2

λr(Ω1,Ω2)
(17)

where λr(Ω1,Ω2),E
{
|Brhrhrh(Ω1,Ω2)|2

}
is the estimation of the

bispectrum power of DNSI. It can be obtained from nonspeech inter-
vals (assuming the speech is not active in the initial 0.3s for facilia-
tion.). Actually, the nonspeech intervals can also be judged utilizing
voice activity detection algorithm (VAD) [18]. Bshshsh(Ω1,Ω2) and
Bxoxoxo(Ω1,Ω2) are respectively the bispectrum power of the speech
signal received by the AVS before and after it is polluted by the DNSI.
Assuming the speech and DNSI are uncorrelated, we have

ξ(Ω1,Ω2) = γ(Ω1,Ω2)− 1 (18)
Following (16) and (18), we note that Bshshsh(Ω1,Ω2) is un-

known. Instead, Bxoxoxo(Ω1,Ω2) can be directly computed from the
current (t)th segment of AVS received signal xo. Hence, we estimate
ξ(t)(Ω1,Ω2) taking use of its relation to γ(t)(Ω1,Ω2) in (18), where
the superscript (·)(t) indicates the time segment t and each data seg-
ment is taken from several consecutive time frames, whose details will
be explained in Section IV. Inspired by the “decision-directe” method
in [17], we consider recursively updating ξ(t)(Ω1,Ω2) using the am-
plitude estimator of the (t− 1)th segment for smoothing to reduce
speech distortion [17] and the B-PostLSIR of (t)th segment to reduce
the residual noise. Then the B-PriLSIR ξ(Ω1,Ω2) for the current (t)th

segment can be estimated as

ξ̂(t)(Ω1,Ω2)=β

∣∣∣B(t−1)
shshsh(Ω1,Ω2)

∣∣∣2
λr(Ω1,Ω2)

+(1−β)P
[
γ(t)(Ω1,Ω2)−1

]
(19)
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where P [·] denotes half-wave rectification to ensure the estimated B-
PriLSIR to be positive. β ∈ [0, 1] is a forgetting factor, which is set to

be 0.7 by empirical results. Followling (16), the
∣∣∣B(t−1)

shshsh(Ω1,Ω2)
∣∣∣2

in (19) can be approximated as:∣∣∣B̂(t−1)
shshsh

∣∣∣2=(
∣∣∣B̂(t−1)

shshsh

∣∣∣2/∣∣∣B̂(t−1)
xoxoxo

∣∣∣2)·
∣∣∣B̂(t−1)

xoxoxo

∣∣∣2
=

[∣∣∣B̂(t−1)
shshsh

∣∣∣2/(∣∣∣B̂(t−1)
shshsh

∣∣∣2+λr)]·∣∣∣B̂(t−1)
xoxoxo

∣∣∣2
=
[
ξ̂(t−1)/(ξ̂(t−1) + 1)

]
·
∣∣∣B̂(t−1)

xoxoxo

∣∣∣2
(20)

Substituting (20) into (19), we get

ξ̂(t) = βγ̂(t−1) ξ̂(t−1)

ξ̂(t−1) + 1
+ (1− β)P

[
γ̂(t) − 1

]
(21)

In (20) and (21), “(Ω1,Ω2)” is omitted for simplicity.
From the definition of ξ(Ω1,Ω2) in (16), it is easy to see that

ξ(Ω1g,Ω2g)�1 implies Bshshsh(Ω1g,Ω2g)/Brhrhrh(Ω1g,Ω2g)�1
with high probability. Then, the FPs with HLSIR can be selected as
the ones with large ξ̂(t)(Ω1,Ω2):

mξ(Ω1,Ω2),

{
1 ξ̂(t)(Ω1,Ω2)>ζ

0 otherwise
(22)

where ζ is a threshold. The larger ζ is , the less polluted FPs are
selected, but the amount of selected FPs gets fewer. We empirically
set it as 1.5 considering different DNSI conditions.

However, evaluating ξ(Ω1,Ω2) in (16), we noted that there are
two cases to get ξ(Ω1,Ω2)�1:

Case 1: Bshshsh(Ω1g,Ω2g) is large, Brhrhrh(Ω1g,Ω2g) is small;
Case 2: Bshshsh(Ω1g,Ω2g) is small, Brhrhrh(Ω1g,Ω2g) is smaller.
Obviously, large value of ξ(Ω1,Ω2) is not a perfect indicator of

speech dominated FPs since only Case 1 is preferred.
As a result, it is straightforward that we should select the

speech frequency points (SFPs) where the speech bispectrum power
|Bshshsh(Ω1,Ω2)|2 is of large value conforming to Case 1 and we
can determine the HLSIR-SFPs accordingly.
Step 2: Estimation of SDBM.

Following (16), with the estimated B-PriLSIR ξ̂(t)(Ω1,Ω2), we
can directly estimate |Bshshsh(Ω1,Ω2)|2 at current segment as:∣∣∣B̂(t)

shshsh(Ω1,Ω2)
∣∣∣2 = ξ̂(t)(Ω1,Ω2) · λr(Ω1,Ω2) (23)

Thereupon the SFPs can be selected with binary mask
ms(Ω1,Ω2):

ms(Ω1,Ω2),

1
∣∣∣B̂(t)
shshsh(Ω1,Ω2)

∣∣∣2>M max
(Ω1,Ω2)

(
∣∣∣B̂(t)
shshsh(Ω1,Ω2)

∣∣∣2)
0 otherwise

(24)

where a threshold M > 0 is applied to indicate the presence of SFP.
While too large value can cause the insufficiency of selected FPs. It is
set to be 0.15 by empirical results with the details in Section IV.

With the estimated mξ(Ω1,Ω2) and ms(Ω1,Ω2), we further esti-
mate the SDBM satisfying the statement of Case 1 as:

m(Ω1,Ω2) , mξ(Ω1,Ω2) ·ms(Ω1,Ω2) (25)

Logically, the HLSIR-SFPs correspond to the non-zero values of
m(Ω1,Ω2) estimated in (25). Then the BISDR at these HLSIR-SFPs
is given by:

Ĩ(Ω1,Ω2) = m(Ω1,Ω2) · I(Ω1,Ω2) (26)
where Ĩ(Ω1,Ω2) is the masked BISDR. With the derivation of (26) and
(25), from (12), we can reach the following approximation:

Ĩ(Ω1,Ω2)=m(Ω1,Ω2)·b(θs,φs)+m(Ω1,Ω2)·ε(Ω1,Ω2)≈b(θs,φs) (27)
As shown in (27), the speech DOA cue b(θs,φs) can be extracted

by the estimated mask m(Ω1,Ω2).
To validate our derivation, we visualize the bispectrum of speech

and DNSI, the Iuo(Ω1,Ω2) and Ĩuo(Ω1,Ω2) in log-scale in Fig. 1.
Comparing Fig. 1(a) and (b), speech and DNSI have different bis-
pectrum patterns with some overlapping areas. Besides, the spatial
pattern shown in Fig. 1(d) is similar to the high energy one in Fig.
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Fig. 1. Example illustration: (a) bispectrum of one speech sig-
nal, (b) bispectrum of one DNSI signal, (c) Iuo(Ω1,Ω2) by (8), (d)
Ĩuo(Ω1,Ω2) by (26). (DNSI is hfchannel noise, SIR = 10dB; AWGN,
SNR = 10dB.)

1(a), which indicates significant speech information is extracted from
Fig. 1(c). Moreover, Ĩuo(Ω1,Ω2) in Fig. 1(d) has similar values at the
red dots, which validates the result derived in (27).

3.4. The Proposed DOA Estimation Algorithm

From the description above, it is obvious that the masked BISDR
Ĩ(Ω1,Ω2) can be viewed as random variables in bispectrum domain
with mean of ux, vs and ws, respectively. Specifically, the DOA esti-
mation task is to estimate the cluster center at (us,vs,ws) by cluster-
ing the masked BISDR Ĩ(Ω1,Ω2) corresponding to all HLSIR-SFPs.
To achieve an effective and robust clustering result, the kernel density
estimation (KDE) method of [19] is adopted. With the clustering re-
sult (ûs,v̂s,ŵs), according to (2), the estimated DOA (θ̂s,φ̂s) can be
calculated as

θ̂s = cos−1 ŵs, φ̂s = tan−1(v̂s/ûs) (28)
To simplify the notation in the following context, the proposed

DOA estimation algorithm is termed as the AVS-MBISDR algorithm,
which is developed under clustering the masked BISDR data using a
single AVS. The AVS-MBISDR algorithm is summarized as follows:

1) Segment the AVS output data x(k) and calculate the bispectrum
of the four sensors Bxoxlxo(Ω1,Ω2) and Bxoxoxo(Ω1,Ω2) in each
time segment by (6) and (7).

2) Calculate the BISDR Ilo(Ω1,Ω2) between sensors by (8).
3) Get the SDBMm(Ω1,Ω2) by (25) and then the masked BISDR

Ĩ(Ω1,Ω2) by (26).
4) Estimate the DOA (θ̂s,φ̂s) via (28) by the clustering result

(ûs,v̂s,ŵs) derived using KDE [19].

4. EXPERIMENTAL RESULTS

In this section, several experiments are carried out to evaluate the per-
formance of our proposed AVS-MBISDR algorithm under different
conditions. Another three methods capable of DOA estimation using
a small microphone array are taken as the comparison methods, in-
cluding the well-known GMDA-Laplace algorithm [12] and our pre-
viously proposed AVS-ISDR algorithm [5] and AVS-BISDR [9].

Throughout the simulations, the speech signal is of 3 seconds and
sampled at 8kHz from TIMIT [20]. One DNSI is set at (60◦,75◦).
Unless otherwise specified, the speech source is set at (60◦,45◦) with
no reverberation. The DNSI is taken from Noisex92 [21]. In addition,
the AWGN is taken as NDBN with SNR = 10dB. For processing sig-
nals, the frame size is set to be 256 samples with 60% overlap. For
the GMDA-Laplace algorithm, following the setup in [12], the DOA
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estimation results are obtained by running the algorithm twice since
originally it just uses two microphones.

The performance metric used is the root mean squared er-
ror (RMSE) of the speech source, averaging over 100 indepen-
dent trials with different random AWGN. It is defined as RMSE=

0.5
√∑100

j=1((θ̂j−θ)2+(φ̂j−φ)2)/100 where θ̂j and φ̂j are respec-

tively the estimated angles of the speaker θ and φ on the jth trial.
1) Effect of the mask threshold: This experiment aims to evaluate

the impact of choosing different threshold M for SDBM on the per-
formance of AVS-MBISDR under different SIR conditions since M
is an important parameter. The results are shown in Fig. 2. It is noted
that when SIR<0dB and M>0.35, the RMSE is large. This is reason-
able because the largerM is, the fewer the number of selected FPs. In
low SIR conditions, with the strong effect of DNSI, enough FPs are
necessary for the estimation performance. While when SIR>0dB, the
RMSE is not sensitive to M . The optimal M can be selected as 0.15,
which gives the best results under most SIR and DNSI conditions.

2) RMSE versus azimuth angle: This experiment is conducted to
evaluate the sensitivity of the proposed DOA algorithm over different
azimuth angles. We fix θs=60◦. The experimental results are shown
in Fig. 3. We are encouraged to see that our proposed AVS-MBISDR
algorithm outperforms the comparison algorithms, where the RMSE
values are constantly closed to 0◦ for all angles. It is noted that the
estimated DOA by the comparison algorithm gives larger fluctuation
from its true DOA when the azimuth goes closer to some special an-
gles (e.g. 0◦ and 180◦).

3) RMSE versus different SIR and DNSI: In this experiment, the
behavior of AVS-MBISDR under different SIR and types of DNSI is
evaluated. Experimental results are presented in Fig. 4. As expected,
the RMSE of the proposed method keeps as a small constant (close to
0◦) even when the SIR is less than 0dB. And also it works better than
the previous work AVS-BISDR for certain types of noises which are
less stationary. The other two algorithms, by contrast, both suffer a
severe decline of the DOA estimation performance with the impact of
strong DNSI, as it is hard to differentiate the speech source and DNSI
in time-frequency spectrum. This verifies our proposed algorithm is
more effective and robust against DNSI.

4) RMSEs versus different reverberation levels: This experiment
aims at evaluating the influence of the reverberation on the perfor-
mance of the proposed AVS-MBISDR. The room impulse response is
simulated by the image method [22] with the virtual rectangular room
size of 10×5×4m3, and five different reverberation time (RT60) con-
ditions are considered. It is seen in Fig. 5 that the proposed algorithm
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Fig. 4. RMSE versus different SIR levels and DNSI signals as: white
Gaussian noise (a), machinegun noise (b), F16 noise (c), and factory
noise (d).
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Table 1: DOA Estimation Resluts in a Real Scenario

True DOA θ 90◦ 90◦ 90◦ 90◦ 90◦

φ 0◦ 45◦ 90◦ 135◦ 180◦

AVS-MBISDR θ 90.66◦ 89.71◦ 90.34◦ 90.72◦ 89.78◦

φ 1.92◦ 43.82◦ 90.95◦ 139.94◦ 179.93◦

has superior estimation accuracy over AVS-BISDR and AVS-ISDR for
all RT60 conditions under this setup. This indicates that our proposed
algorithm is not sensitive to room reverberation, which is a favorable
property since the performance of many existing algorithms, such as
GMDA-Laplace, degrades when heavy room reverberation exists.

5) DOA estimation based on recorded data: This experiment is
conducted to evaluate the performance of the proposed AVS-MBISDR
algorithm in a real scenario with realtime noise, interferences and re-
verberation using the AVS data capturing system developed by AD-
SPLAB [5]. The environment is as follows: The room is about
8.5× 3× 5m3 with the uncontrolled background noise including air
conditioning and computer servers that can be viewed as the DNSI.
The SNR measured is approximately 20dB and the reverberation is
present. The distance between the speaker and the AVS is 0.5m. Five
different groups of DOA are estimated respectively in Table 1, one
recorded sentence from male and one from female in each group. We
can see that the DOA estimation errors of the proposed AVS-MBISDR
algorithm are less than 5◦ in each group with real recorded data.

5. CONCLUSIONS

In this paper, using a single AVS, a novel robust 3-D DOA estimation
method (termed as AVS-MBISDR) is developed in bispectrum domain
for speech sources. To guarantee robust speech HOS spatial location
information extraction against DNSI, the SDBM is further obtained.
Theoretical analysis and experimental results with the simulated and
real captured data illustrate that AVS-MBISDR exhibits excellent es-
timation performance under various DNSI conditions even when SIR
is smaller than 0dB. Also, superior performance is achieved when re-
verberation is strong. Further research is required to estimate the ef-
fectiveness of the approach for multiple source DOA estimation and
the ability to operate in real-time on embedded hardware.

3269



6. REFERENCES

[1] Flavio Ribeiro, Cha Zhang, Dinei Florencio, Demba Elimane
Ba, et al., “Using reverberation to improve range and elevation
discrimination for small array sound source localization,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol.
18, no. 7, pp. 1781–1792, 2010.

[2] Michael Brandstein and Darren Ward, Microphone arrays: sig-
nal processing techniques and applications, Springer Science &
Business Media, 2001.

[3] Jacek P Dmochowski, Jacob Benesty, and Sofiene Affes, “A
generalized steered response power method for computationally
viable source localization,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 15, no. 8, pp. 2510–2526,
2007.

[4] Mengqi Ren and Yue Xian Zou, “A novel multiple sparse source
localization using triangular pyramid microphone array,” Signal
Processing Letters, IEEE, vol. 19, no. 2, pp. 83–86, 2012.

[5] Yue Xian Zou, Wei Shi, Bo Li, Christian H Ritz, Muawiyath
Shujau, and Jiangtao Xi, “Multisource doa estimation based
on time-frequency sparsity and joint inter-sensor data ratio with
single acoustic vector sensor,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 4011–4015.

[6] Maximo Cobos, Jose J Lopez, and Sascha Spors, “A sparsity-
based approach to 3d binaural sound synthesis using time-
frequency array processing,” EURASIP Journal on Advances
in Signal Processing, vol. 2010, pp. 2, 2010.

[7] Takanobu Nishiura, Satoshi Nakamura, and Kiyohiro Shikano,
“Talker localization in a real acoustic environment based on doa
estimation and statistical sound source identification,” in Acous-
tics, Speech, and Signal Processing (ICASSP), 2002 IEEE Inter-
national Conference on. IEEE, 2002, vol. 1, pp. I–893.

[8] Wei Xue, Shan Liang, and Wenju Liu, “Interference robust doa
estimation of human speech by exploiting historical information
and temporal correlation.,” in INTERSPEECH, 2013, pp. 2895–
2899.

[9] Y H Jin and YX Zou, “Robust speaker doa estimation with sin-
gle avs in bispectrum domain,” in 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2016, pp. 3196–3200.

[10] Michael E Lockwood and Douglas L Jones, “Beamformer per-
formance with acoustic vector sensors in air,” The Journal of
the Acoustical Society of America, vol. 119, no. 1, pp. 608–619,
2006.

[11] Muawiyath Shujau, CH Ritz, and IS Burnett, “Designing acous-
tic vector sensors for localisation of sound sources in air,” in Sig-
nal Processing Conference, 2009 17th European. IEEE, 2009,
pp. 849–853.

[12] Wenyi Zhang and Bhaskar D Rao, “A two microphone-based ap-
proach for source localization of multiple speech sources,” Au-
dio, Speech, and Language Processing, IEEE Transactions on,
vol. 18, no. 8, pp. 1913–1928, 2010.

[13] Noam R Shabtai, Boaz Rafaely, and Yaniv Zigel, “The effect
of reverberation on optimal gmm order and cms performance in
speaker verification systems,” SCIYO. COM, p. 37, 2010.

[14] David R Brillinger, “An introduction to polyspectra,” The Annals
of mathematical statistics, pp. 1351–1374, 1965.

[15] Wei Xue, Shan Liang, and Wenju Liu, “Doa estimation of speech
source in noisy environments with weighted spatial bispectrum
correlation matrix,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE, 2014,
pp. 2282–2286.

[16] Chrysostomos L Nikias and Mysore R Raghuveer, “Bispectrum
estimation: A digital signal processing framework,” Proceed-
ings of the IEEE, vol. 75, no. 7, pp. 869–891, 1987.

[17] Yariv Ephraim and David Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude esti-
mator,” Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, vol. 32, no. 6, pp. 1109–1121, 1984.

[18] Jongseo Sohn, Nam Soo Kim, and Wonyong Sung, “A statis-
tical model-based voice activity detection,” Signal Processing
Letters, IEEE, vol. 6, no. 1, pp. 1–3, 1999.

[19] Zdravko I Botev, Joseph F Grotowski, Dirk P Kroese, et al.,
“Kernel density estimation via diffusion,” The Annals of Statis-
tics, vol. 38, no. 5, pp. 2916–2957, 2010.

[20] John S Garofolo, Linguistic Data Consortium, et al., TIMIT:
acoustic-phonetic continuous speech corpus, Linguistic Data
Consortium, 1993.

[21] Andrew Varga and Herman JM Steeneken, “Assessment for au-
tomatic speech recognition: Ii. noisex-92: A database and an
experiment to study the effect of additive noise on speech recog-
nition systems,” Speech communication, vol. 12, no. 3, pp. 247–
251, 1993.

[22] Jont B Allen and David A Berkley, “Image method for efficiently
simulating small-room acoustics,” The Journal of the Acoustical
Society of America, vol. 65, no. 4, pp. 943–950, 1979.

3270


