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ABSTRACT
When distances between microphone pairs are larger than the
half-wavelength of signals, source localization methods using
cross-correlation such as time-difference-of-arrival (TDOA),
steered response power (SRP) are commonly used in prac-
tice. We present here a novel model that expresses micro-
phone pairwise cross-correlations as a sum of autocorrela-
tions of source signals shifted by the relative delays of the
signals arriving at the microphone pairs, and weighted by the
source power and the distances between the sources and the
microphone pairs. The model is formulated as a linear inverse
problem and is sparse with respect to the source power map.
The source power map, which directly shows the locations
of all the sound sources, can be reconstructed using `1-norm
minimization algorithms. We demonstrate the effectiveness
of our model in a wildlife monitoring application, where the
goal is to locate multiple frogs in a dense chorus.

Index Terms— cross-correlation, distributed microphone
array, linear inverse problem, multi-source, source localiza-
tion, sparse representation

1. INTRODUCTION

Sound source localization using a distributed microphone ar-
ray is widely used in wildlife monitoring [1–3], environmen-
tal noise mapping [4, 5], surveillance, and other civilian and
military applications [6]. As distributed arrays spanning a
larger area with fewer microphones are desirable for cost rea-
sons, improving accuracy and resolution of the localization
task still remains a challenge for researchers worldwide.

When there is a single source, time-difference-of-arrival
(TDOA) is an effective localization algorithm because of its
accuracy and robustness [7]. Jones and Ratnam [1] exploited
temporal sparseness of frog calls to locate active sources us-
ing TDOA. Valin et al. employed TDOA to detect a dom-
inant speaker using a mobile microphone array [8]. When
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there are multiple sources, steered response power (SRP) is
shown to be a better choice [7, 9]. In general, SRP meth-
ods beamform over a search grid by summing pairwise cross-
correlations and locating peaks in the resulting SRP map [10].
Among all SRP methods, SRP-PHAT is the most popular,
where the map is computed using phase-transform (PHAT)
cross-correlations [7, 9]. Collier et al. [2] computed two-
dimensional SRP maps to find locations of antbirds. Aarabi
[11] used a spatial likelihood function which is a variant of
SRP for source localization. One advantage of SRP meth-
ods is that they take into account the entire pairwise cross-
correlation functions to make decisions, not only the peak
values as in TDOA techniques. However, because SRP com-
putes the output power of a delay-and-sum beamformer [9],
which has some well-known limitations such as broad side-
lobes [12], the produced SRP map is smeared and has low res-
olution. As a consequence, weaker sources are often masked
by stronger sources and it is difficult to identify all the sources
on the SRP map.

Here, we present a new model that explicitly expresses
pairwise cross-correlations as a sum of autocorrelations of
source signals, which are shifted by the relative delays of
the signals arriving at the microphone pairs, weighted by the
source power and the distances between the sources and the
microphone pairs. The sound field to be recovered by our
model represents the power of the present sound sources,
which is spatially sparse. Using a linear inverse problem
formulation, a solution for the sound field can be obtained us-
ing sparse reconstruction techniques such as FOCUSS [13],
Basis Pursuit Denoising [14], LASSO [15], etc. After that,
the source locations can be inferred directly from the re-
constructed sound field. For the traditional signal model in
the frequency domain, there also exist sparse signal recon-
struction approaches to estimate direction-of-arrival of sound
sources [16]. Here, we use LASSO to solve the inverse
problem and compare the results with SRP-PHAT’s results.
Our simulation and experimental results show that our model
outperforms SRP-PHAT.
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2. SIGNAL MODEL

We divide the region of interest into a grid of N identical
points. Each point has a physical dimension of dx x dy x dz
m3. Let ξn be the 3D coordinates of a grid point n with ref-
erence to an arbitrary origin. We assume that every grid point
can have at most one sound source. Let sn(t) be a wideband
signal generated by a source at point n. If there is no source
at n, sn(t) = 0 ∀t. Our objective is to identify all the grid
points that contain a sound source.

Consider a microphone array comprised of M micro-
phones arranged in an unrestricted fashion. Let ξi be the 3D
coordinates of microphone i. The signal received at micro-
phone i in the time domain is

yi(t) =

N∑
n=1

1

di,n
sn(t− di,n

c
) + vi(t), (1)

where di,n = ‖ξn − ξi‖2, c is the speed of sound and vi(t) is
the noise received at microphone i.

The cross-correlation between microphone i and j is
Rij(τ) = E{y∗i (t)yj(t+ τ)}, where E{·} denotes mathemat-
ical expectation, (·)∗ denotes complex conjugate, and τ is a
time lag. We assume that source signals and the microphone
noises are mutually uncorrelated. Expanding the right-hand
side of the cross-correlation equation and eliminating the
cross terms, we obtain

Rij(τ) = E

{
N∑

n=1

1

di,ndj,n
s∗n(t− di,n

c
)sn(t− dj,n

c
+ τ)

}

=

N∑
n=1

1

di,ndj,n
An(τ − τni,j), (2)

where An(τ) = E{s∗n(t)sn(t + τ)} is the autocorrelation of
signal at grid point n, τni,j = (dj,n − di,n)/c is the TDOA
of the signal from grid point n to microphone pair (i, j).
Eq. (2) shows that the cross-correlation value of microphone
pair (i, j) at lag τ is the sum of all signal autocorrelation
functions at lag τ , shifted by TDOA τni,j and weighted by
the distances from the sources to the pair of microphones.
We denote the signal power at grid point n as xn. From the
definition of autocorrelation, xn = An(0). If there is no
sound source at grid point n, xn = 0. We denote Ān(τ) as
a normalized autocorrelation such that Ān(0) = 1, and the
cross-correlation becomes

Rij(τ) =

N∑
n=1

1

di,ndj,n
Ān(τ − τni,j)xn. (3)

Since Ri,j(τ) = Rj,i(−τ), we have P =
(
M
2

)
unique

pairs of microphones. For each pair of microphones, the max-
imum reliable relative delay [9] is

τmax
i,j = ceil

(
fs
c
‖ξj − ξi‖2

)
, (4)

where fs is the sampling frequency. As a result, τi,j is limited
to this set Di,j = {−τmax

i,j , · · · ,−1, 0, 1, · · · , τmax
i,j }.

We rewrite Eq. (3) in matrix form for all possible lags for
Ri,j(τ) in Eq. (5). Let li,j = 2τmax

i,j + 1, then vector ri,j
∈ Rli,j , matrix Ai,j ∈ Rli,j×N , and vector x ∈ RN . The
nth column of matrix Ai,j, denoted as ani,j, is the normalized
autocorrelation function of a sound source at grid point n,
shifted by the relative delay at microphone pair (i, j), and
weighted by the distance from point n to microphone pair
(i, j). The pairwise cross-correlation is a linear combination
of columns in Ai,j, scaled by signal power x. Since x is the
same for all pairs of microphones, we are able to stack all the
pairwise cross-correlations into a single vector as follows:

r1,2
...

ri,j
...

rM−1,M


︸ ︷︷ ︸

r

=


A1,2

...
Ai,j

...
AM−1,M


︸ ︷︷ ︸

W

x. (6)

Let L =
∑M−1

i=1

∑M
j=i+1 li,j , vector r ∈ RL, matrix W

∈ RL×N . Each column of W, wn =
[
an1,2 · · ·anM−1,M

]T
,

is a shifted and weighted normalized autocorrelation function
of the source signal at grid point n. Eq. (6) is a novel in-
terpretation of the pairwise cross-correlations in terms of the
autocorrelations of source signals. From the viewpoint of de-
convolution, column wn can be thought of as a point spread
function (PSF). From the signal representation perspective,
wn is a basis vector and W is a dictionary. If we back-project
each component ani,j of column wn onto the grid and sum
all of the projected maps, we obtain the beam pattern gener-
ated by a source at grid point n, which is similar to SRP map.
The columns in W are not orthogonal. Each column wn em-
beds information on both the location and the characteristic
of the source signal. Back to Eq. (5), the maximum value of
ani,j, which is 1

di,ndj,n
Ān(0), is shifted from the center by τ i,jn ,

which is the TDOA of a source at grid point n to microphone
pair (i, j). By locating these maximum values in P segments
ani,j of wn, we have P values of TDOA from the source to all
microphone pairs. This set of P TDOA values uniquely iden-
tify the location of the source provided if we have enough
microphones. Hahn [17] shows that it requires a minimum of
3 to 4 sensors to locate a source in two dimensions, and 4 or
5 sensors to locate a source in three dimensions. The spec-
tral characteristic of the signal is encoded in the normalized
autocorrelation Ān.

One question that arises is how to construct W if the au-
tocorrelation functions of all the signals present in the sound
field and their locations are unknown. In certain scenarios
where all the sources produce similar sounds (for example
same-species frog chorus [1] or bird vocalization [2, 3]), it is
acceptable to approximate Ān as the same for all grid points
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

Ri,j(−τmax
i,j )

...
Ri,j(0)

...
Ri,j(τmax

i,j )


︸ ︷︷ ︸

ri,j

=



1
di,1dj,1

Ā1(−τmax
i,j − τ1i,j) . . . 1

di,ndj,n
Ān(−τmax

i,j − τni,j) . . . 1
di,Ndj,N

ĀN (−τmax
i,j − τNi,j)

...
...

...
1

di,1dj,1
Ā1(0− τ1i,j) . . . 1

di,ndj,n
Ān(0− τni,j) . . . 1

di,Ndj,N
ĀN (0− τNi,j)

...
...

...
1

di,1dj,1
Ā1(τmax

i,j − τ1i,j) . . . 1
di,ndj,n

Ān(τmax
i,j − τni,j) . . . 1

di,Ndj,N
ĀN (τmax

i,j − τNi,j)


︸ ︷︷ ︸

Ai,j



x1
...
xn
...
xN


︸ ︷︷ ︸

x

. (5)

n. We can use some known example of the sound source
of interest or use the current segment of the recorded signal
to estimate Ān. This is a trade-off between accuracy of our
estimation and prior knowledge we have about the signals en-
coded in W. From our simulation and experimental results,
this approximation produces a reasonable estimation for x.

In reality, Eq. (6) is not exact because of modelling errors
such as the sound sources are not monopole, sound propa-
gates differently across the sound field, and there are reflec-
tions from ground or other objects. We combine all of these
errors into an additive Gaussian noise terms e, and Eq. (6)
becomes

r = Wx + e. (7)

Because the number of sources is much smaller than the
number of grid points N , x is sparse. In addition, x is non-
negative because it represents signal power. As a result, we
can solve the linear inverse problem in Eq. (7) using sparse
methods such as FOCUSS [13], Basic Pursuit Denoising [14],
LASSO [15], etc. with non-negative constraint. We name
our model as the auto-cross correlation (ACC) model. In this
paper, we use LASSO to reconstruct the sound field x and
compare the results of our ACC model with the map obtained
using SRP-PHAT [9].

3. SOLVING A LINEAR INVERSE PROBLEM WITH
SPARSITY CONSTRAINT

The sound field x can be obtained by solving the following
optimization

min
x
‖r−Wx‖22 + λ‖x‖1 s.t. x ≥ 0, (8)

where parameter λ controls the trade-off between the residual
norm and the sparsity of x. Eq. (8) is a convex optimization
problem and can be solved using off-the-shelf packages. In
this paper, we use l1 ls package [18] implemented in Matlab
to solve Eq. (8). We manually choose a value for λ to produce
a reasonably sparse estimation for x.

4. PRACTICAL IMPLEMENTATION

Computation of cross-correlation: We use phase transform
generalized cross-correlation (GCC-PHAT) [9] to estimate
microphone pairwise cross-correlations.

Max filter to compensate measurement errors: One of
the challenges for source localization using distributed ar-
rays is to measure microphone locations accurately. As dis-
tributed arrays span a large area, error in array location mea-
surement is inevitable. This error causes the estimated pair-
wise cross-correlations to be shifted by a few lag points. In
addition, inaccurate measurement of the speed of sound also
contributes to the time lag shift. To compensate for these er-
rors, we introduce a max filter for the cross-correlation as fol-
lowsRi,j(τ) = max(Ri,j(τ−τcomp), . . . , Ri,j(τ+τcomp)),
where τcomp is a small lag value that is proportional to the
measurement errors. The max filter introduces a standard de-
viation of ±τcompc/fs (meter) in the estimated source loca-
tions. In our experiment, we use τcomp = 5, thus there is an
additional error of ±8.7 cm in our location estimations.
Decimation of Ri,j(τ): The max filter results in redundant
values of Ri,j(τ). Therefore we decimate Ri,j(τ) by a factor
of 2τcomp+1 and remove the corresponding rows in W. This
reduces the size of r and W, and speed up the computation.
The max filter and the decimation steps are not necessary if
the measurement error is insignificant.
Using a subset of microphone pairs: When distances be-
tween microphones are large, signal coherence between two
microphones reduces, thus their pairwise cross-correlation
contains more noise. We select pairs of microphones with
τmax
i,j < τmax to reduce errors in our estimation. In our

experiments, we choose τmax = 400.

5. RESULTS AND DISCUSSION

We experimented with our model on green tree frog data col-
lected in a breeding pond (Creekfield Lake) at Brazos Bend
State Park, TX (USA). Readers can refer to [19] for more in-
formation on the experimental set up. Our array consisted
of 15 omnidirectional microphones, divided into 3 identical
modules as shown in Fig.1. In each module, 4 microphones
were mounted on the ends of a 1.4 m cross-arm positioned
2.65 − 2.9 m above the ground, and a fifth microphone was
mounted 1 m below the cross at the end of a single cross-arm
of 0.7 m. Microphone signals were sampled simultaneously
at 20 ksps, 24 bit. The estimated speed of sound was 346.8
m/s. We bandpass-filtered the signal in the frog frequency
range (700 − 5500 Hz) before computing cross-correlations.
The length of one data segment was 0.15 seconds. Our search
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Fig. 1: Microphone array location.
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(a) SRP map at z = 0 m
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(b) ACC map at z = 0 m

Fig. 2: Simulation results for 8 sound sources.

grid was between [−5, 10) m in x axis, [0, 15) m in y axis,
and [0, 0.5] m in z axis. We used dx = 0.2 m, dy = 0.2 m,
dz = 0.5 m. The grid had 11552 points and covered 225 m2.

5.1. Simulation results

For the simulation, we used only 6 microphones (1, 2, 6, 7, 11,
12) to simulate a very sparse array. We randomly generated
8 white noise sources on the plane z = 0 m. We also added
white noise of 5dB SNR into the signal. Since we knew the
array location exactly, we did not use the max filter and dec-
imation of Ri,j(τ). We used the normalized autocorrelation
of white noise to compute W using Eq. (5). Fig. 2 displays
results obtained by SRP-PHAT and our auto-cross correlation
(ACC) model. The blue stars indicate the microphone loca-
tions. The sound field obtained by our ACC model is clean
and sparse. The ACC model recovered the exact locations of
all the 8 sources. In contrast, the SRP map produces multi-
ple false peaks. In addition, for two nearby sources in the top
right corner, the peak corresponding to the second source is
not welldefined. From the simulation results, our model has
better resolution and accuracy than the SRP-PHAT method.

5.2. Experimental results

We extracted one frog call from our measurement data to
compute the normalized autocorrelation. Then, we estimated
W as in Eq. (5) assuming the same autocorrelation for all n.
We selected 76 out of 105 pairs of microphones. After the
max filter and decimation, the size of W was 2993 x 11552.
We set λ = 0.01. Fig. 3 (a-d) shows SRP maps without and
with max filter. Without the max filter, the pairwise cross-
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(a) SRP map without error com-
pensation at z = 0 m
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(b) SRP map without error com-
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(d) SRP map at z = 0.5 m
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(f) ACC map at z = 0.5 m

Fig. 3: Experimental results for 3 sound sources.

correlations when back-projected on the grid search are mis-
aligned, and produce noisy maps. With the max filter, the
peaks of the cross-correlations are aligned, and we could eas-
ily determine the source locations. Besides the ACC model,
the max filter is also a novel contribution of this paper. Fig. 3
(e-f) shows our model estimation results. For experimental
data, we observe that the hills on the SRP map are wide.
Thus nearby sources can be potentially merged into one. In
contrast, our model returns a clean power map. It is much
easier to determine the source locations from the ACC map
than SRP map. In [19], Jones et al. located 6 frogs A, B,
C, D, E and F. Fig. 3 (e-f) shows locations of frogs A, B and
D. We processed the data to determine the mean locations of
all the 6 frogs. Using [19] as a ground truth, our root mean
square error is 0.54 m. We conclude here that our new model
is promising for source localization using distributed arrays.
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