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ABSTRACT

Identifying characteristic vibrational modes and frequencies
is of great importance for monitoring the health of struc-
tures such as buildings and bridges. In this work, we address
the problem of estimating the modal parameters of a struc-
ture from small amounts of vibrational data collected from
wireless sensors distributed on the structure. We consider a
randomized spatial compression scheme for minimizing the
amount of data that is collected and transmitted by the sen-
sors. Using the recent technique of atomic norm minimiza-
tion, we show that under certain conditions exact recovery of
the mode shapes and frequencies is possible. In addition, in a
simulation based on synthetic data, our method outperforms a
singular value decomposition (SVD) based method for modal
analysis that uses the uncompressed data set.

Index Terms— Modal analysis, spectral analysis, struc-
tural health monitoring, atomic norm minimization

1. INTRODUCTION

Due to the considerable time and expense required to perform
manual inspections of physical structures such as buildings
and bridges, and the difficulty of repeating these inspections
frequently, there is a growing interest in developing auto-
mated techniques for structural health monitoring (SHM)
[1, 2, 3] based on data collected in a wireless sensor network.
For example, one could envision a collection of battery-
operated wireless sensors deployed across a structure that
record vibrational displacements over time and then transmit
this information to a central node for analysis [4, 5].

Modal analysis is an analytical technique for assessing the
health of a structure in terms of estimating the modal parame-
ters such as mode shapes and the corresponding frequencies.
As explained in Section 2, the vibration response of a lin-
ear time-invariant (LTI) system can be expressed as a linear
combination of the natural modes which are inherent to the
system and determined completely by its physical properties
such as mass, damping and stiffness [6]. Each mode shape
corresponds to a certain natural frequency. A structure can be
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characterized by these modal parameters which will change
when the structure is damaged.

It is said that atomic norm, which generalizes the `1 norm
for sparse recovery and the nuclear norm for low-rank ma-
trix completion, is the best convex heuristic for underdeter-
mined linear inverse problems [7]. Recently, atomic norm
minimization (ANM) based approaches which deal with con-
tinuous valued frequencies have been shown to be efficient
and powerful for exactly recovering the unobserved samples
and identifying the unknown frequencies in both single mea-
surement vector (SMV) [8] and multiple measurement vector
(MMV) [9, 10] problems. With sufficient random samples
and well separated frequencies, exact frequency localization
can be guaranteed. Moreover, these kinds of approaches can
also eliminate the basis mismatch problems [11, 12, 13] that
plague existing compressed sensing techniques.

In this work, we consider a particular random spatial com-
pression protocol for data collection and transmission. In this
protocol, at each time sample, each sensor modulates its sam-
ple value by a random number, and the sensors transmit these
values coherently to the central node, where the modulated
values add to result in a single measurement. As proposed
in [4], such randomized spatial aggregation of the measure-
ments can be achieved as part of using phase-coherent analog
transmissions to the base station. We highlight the fact that,
based on this compressed data, modal analysis can be formu-
lated as an ANM problem. The ANM problem can be solved
efficiently and in some cases perfectly recover a structure’s
mode shapes and frequencies. In contrast to an alternative sin-
gular value decomposition (SVD) based approach, the ANM
method can succeed even when the mode shapes are not or-
thogonal.

2. PREVIOUS WORK

For an N degree-of-freedom LTI system [14], the second-
order equations of motion which represent the dynamic be-
havior of the system can be formulated as

[M]{ẍ(t)}+ [C]{ẋ(t)}+ [K]{x(t)} = {f(t)} (1)

where [M], [C] and [K] denote the mass, damping and stiff-
ness matrix, respectively. {x(t)} ∈ RN and {f(t)} ∈ RN
are the displacement data and the excitation force.
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According to the modal expansion theorem [15], the sys-
tem response {x(t)} can be expressed uniquely as a linear
combination of the system modes:1

{x(t)} = [Ψ]{q(t)} =

K∑
k=1

{ψk}qk(t), (2)

where [Ψ] is an N × K matrix containing the structure’s
K active mode shapes {ψk} as columns, and {q(t)} is a
time-varying length-K vector of modal responses qk(t) =
Ake

j2πfkt for some complex amplitudes Ak and frequencies
fk.

In recent years, blind source separation (BSS) based
methods have been widely used in modal analysis. The
authors in [17] and [18] propose a new modal identifica-
tion algorithm based on sparse component analysis (SCA)
to deal with even the underdetermined case where sensors
may be highly limited compared to the number of active
modes. In [19], a novel decentralized modal identification
method termed PARAllel FACtor (PARAFAC) based sparse
BSS (PSBSS) method is proposed. Independent component
analysis (ICA) is a powerful method to solve the BSS prob-
lem. Yang et al. present an ICA-based method to identify
the modal parameters of lightly and highly damped systems,
even in the case with heavy noise and nonstationarity [20].
Another work [21] also presents a new method based on a
combination of CS and complexity pursuit (CP) to solve the
modal identification problem.

In [16], Park et al. characterize the performance of a stan-
dard modal analysis algorithm, the Singular Value Decom-
position (SVD), which enables the number of samples to be
minimized without sacrificing estimation performance. They
also consider the randomized compression of the data at each
sensor before transmission to the central node. However, the
SVD-based algorithm will typically only return an approxi-
mate estimate of a structure’s mode shapes instead of exactly
recovering them. Moreover, the applicability of the SVD-
based algorithm is limited to orthogonal or nearly orthogonal
mode shapes.

3. MAIN RESULTS

3.1. Problem formulation

In this paper, we work on an ideal model in free vibration with
no damping. Our goal is to recover the natural frequencies
and mode shapes from the compressed measurements. We
consider the following analytic signal [16]

{x(t)} =

K∑
k=1

{ψk}Akej2πfkt, (3)

1Similar to [16], we assume that real-valued displacement recordings
have been converted to their complex analytic equivalents.

where {ψk} =
[
{ψk}(1) {ψk}(2) · · · {ψk}(N)

]>
with

“>” denoting the non-conjugate transpose. The analytic sig-
nal in (3) can also be rewritten as

{x(t)} =


∑K
k=1{ψk}(1)Ake

j2πfkt∑K
k=1{ψk}(2)Ake

j2πfkt

...∑K
k=1{ψk}(N)Ake

j2πfkt


with

∑K
k=1{ψk}(n)Ake

j2πfkt denoting the signal from the
nth sensor. Taking regularly spaced Nyquist samples at

T = {t1, t2, · · · , tM} = {0, Ts, · · · , (M − 1)Ts}

with Ts ≤ 1
2max{fk} being the sampling interval, we obtain

the data matrix [X] = [x(t1) · · · x(tM )], which can be writ-
ten as

[X]=

K∑
k=1

Ak


{ψk}(1)ej2πfkt1 · · · {ψk}(1)ej2πfktM

{ψk}(2)ej2πfkt1 · · · {ψk}(2)ej2πfktM

...
. . .

...
{ψk}(N)ej2πfkt1 · · · {ψk}(N)ej2πfktM

 (4)

=

K∑
k=1

Ak{ψk}a(fk)T ∈ CN×M , (5)

where a(fk) := [ej2πfkt1 · · · ej2πfktM ]>.
Frequency estimation from a mixture of complex sinu-

soids is a classical problem in signal processing. Condi-
tions for solving the SMV frequency estimation problem—
analogous to (5) with N = 1—using ANM have recently
been established [8]. As detailed in [9, 10], the MMV prob-
lem (i.e., (5) with N ≥ 1) can also be formulated using
ANM, specifically over a continuous dictionary of atoms tak-
ing the form ha(f)T with ‖h‖2 = 1. However, the works
[9, 10] differ from ours in that they consider random tempo-
ral compression (effectively compressing [X] along its rows),
whereas in this work we consider random spatial compression
(compressing [X] along its columns).

3.2. Randomized spatial compression

In order to conserve power and extend battery life, it is de-
sirable to minimize the amount of data that must be collected
and transmitted in the sensor network. We discuss the possi-
bility of compressing the sensor readings by random spatial
modulation of the time series data.

Define the inner product of [X] and [Y] as

〈[X], [Y]〉 = Tr([Y]H [X]).

We compress each column of [X] by computing its correlation
with a single random vector:

ym = 〈[X](:,m), bm〉 = 〈[X]em, bm〉
= 〈[X], bme

H
m〉, 1 ≤ m ≤M,
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Fig. 1. Random spatial compression: the compressed mea-
surements are obtained by computing the correlation between
the data samples and the random vectors.

where bm ∈ CN×1 is a random vector and em ∈ RM×1 is the
mth canonical basis vector. As proposed in [4], such random-
ized spatial aggregation of the measurements can be achieved
as part of the transmission process using phase-coherent ana-
log transmissions to the base station; see also Fig. 1. Ran-
domized gossiping algorithms [22] can also be used for ag-
gregation of such measurements in a network.

Inspired by [8], we can formulate the modal analysis prob-
lem as an ANM problem:

min
[X̂]
‖[X̂]‖A

s. t. ym = 〈[X̂], bme
H
m〉, 1 ≤ m ≤M.

(6)

Here, the atomic set A is defined as

A = {ha(f)T : ‖h‖2 = 1},

and the atomic norm ‖[X]‖A is defined as

‖[X]‖A = inf {t > 0 : [X] ∈ t conv(A)}

= inf

{∑
k

ck : [X] =
∑
k

ckhka(fk)T , ck ≥ 0

}
.

This ANM problem, which coincides with the one in
[23], is equivalent to a Semi-Definite Program (SDP) and can
be solved efficiently. From the dual polynomial that results
from the optimization problem, one can extract the modal
frequencies fk and subsequently use least-squares to recover
the mode shapes {ψk} up to a phase ambiguity.

Using machinery we have recently developed [23] for
super-resolution of complex exponentials from modulations
with unknown waveforms, the follow theorem shows that
the recovery will be successful with high probability if the
number of time samples M is proportional to KN .

Theorem 3.1. Suppose we observe the data matrix [X] with
the above random spatial compression scheme. Assume that
the random vectors bm are i.i.d samples from an distribution

with the isotropic and µ-incoherent properties defined in [23].
Assume that the signs {ψk}(n)Ak

|{ψk}(n)Ak| are drawn i.i.d. from the
uniform distribution on the complex unit circle, and assume
the minimum separation ∆f = mink 6=j |(fk−fj)Ts| ≥ 4

M−1
[8, 24]. Then there exists a numerical constant C such that

M ≥ CµKN log

(
MKN

δ

)
log2

(
MN

δ

)
is sufficient to guarantee that we can recover [X] via (6) and
localize the frequencies with probability at least 1− δ.

In this case, the total number of measurements received at
the base station (one per sampling time, for each of M sam-
pling times) is essentially proportional to KN , the number of
degrees of freedom in the problem.

4. SIMULATIONS

In this section, we demonstrate the performance of estimating
frequencies and mode shapes with ANM under the context of
random spatial compression. In the following experiments,
we use a modal assurance criterion (MAC)

MAC({ψk}, {ψ̂k}) = |〈{ψk}, {ψ̂k}〉|

to evaluate the correlation between the normalized estimated
mode shape {ψ̂k} and the normalized true mode shape {ψk}.
MAC = 1 indicates perfect recovery of the true mode shape.

4.1. ANM-based strategy vs. SVD-based strategy

In the first experiment, we set the true frequencies as f = 2, 3
and 10 Hz. The number of sensors is N = 10 and the number
of samples is M = 100. We also compare the random spatial
compression strategy with an SVD-based strategy which was
proposed in [16]. We allow the SVD-based strategy to use
the full, uncompressed data matrix of size 10 × 100. As ex-
plained in [16] and as shown in Table 1, Fig. 2 and Fig. 3, the
SVD-based method performs poorly when the mode shapes
are correlated. However, the proposed ANM-based random
spatial compression strategy (using a total of only M = 100
compressed measurements) performs very well both when the
mode shapes are orthogonal and when they are correlated.

4.2. M vs. K and N

In the second experiment, we verify that the minimal number
of samples needed for perfect recovery is approximately lin-
early proportional to the number of active modes K and the
number of sensors N . The true mode shapes are generated
randomly. In the first part of this experiment, we fix N = 5
and change K from 2 to 10. In the second part of this experi-
ment, we fix K = 3 and set the true frequencies as 2, 3, and
10 Hz. The number of sensors N ranges from 2 to 10. It is
shown in both Fig. 4 and Fig. 5 that there does exist a nearly
linear transition from complete failure to perfect recovery.
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Fig. 2. The recovered mode shapes.

5. CONCLUSIONS

In this work, we highlight the fact that modal analysis in free
vibration and with no damping under the context of random
spatial compression can be formulated as an ANM problem,
which is equivalent to an SDP and can be solved efficiently.
The recovery will be successful with high probability if the
number of time samples M is proportional to KN . We also
compare this proposed strategy with an SVD-based strategy.
In future, we will take damping and noise into consideration,
which will increase the practical relevance of this technique.

ftrue fOP fCP MACO
P MACO

S MACC
P MACC

S

2 2 2 1.0000 1.0000 1.0000 0.8632
3 3 3 1.0000 1.0000 1.0000 0.8593
10 10 10 1.0000 1.0000 1.0000 0.9678

Table 1. The true frequencies are set as f = 2, 3 and 10 Hz.
“P”, “S”, “O”, and “C” stand for “Spatial”, “SVD”, “Orthog-
onal”, and “Correlated”, respectively.
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Fig. 3. The recovered mode shapes.
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Fig. 4. Phase transition: number of sensors is set as N = 5.
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Fig. 5. Phase transition: number of active modes is set as
K = 3.
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