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ABSTRACT
Acoustic beamforming has played a key role in the robust automatic
speech recognition (ASR) applications. Accurate estimates of the
speech and noise spatial covariance matrices (SCM) are crucial for
successfully applying the minimum variance distortionless response
(MVDR) beamforming. Reliable estimation of time-frequency (TF)
masks can improve the estimation of the SCMs and significantly im-
prove the performance of the MVDR beamforming in ASR tasks. In
this paper, we focus on the TF mask estimation using recurrent neu-
ral networks (RNN). Specifically, our methods include training the
RNN to estimate the speech and noise masks independently, train-
ing the RNN to minimize the ASR cost function directly, and per-
forming multiple passes to iteratively improve the mask estimation.
The proposed methods are evaluated individually and overally on the
CHiME-4 challenge. The results show that the proposed methods
improve the ASR performance individually and also work comple-
mentarily. The overall performance achieves a word error rate of
8.9% with 6-microphone configuration, which is much better than
12.0% achieved with the state-of-the-art MVDR implementation.

Index Terms— beamforming, robust speech recognition, time-
frequency mask, neural networks, long short-term memory.

1. INTRODUCTION

Despite the rapid progress in automatic speech recognition (ASR)
due to the use of deep neural networks (DNN) and large training cor-
pus [1], recognizing speech reliably from far-field recordings is still
a challenging task. Robust recognition of far-field recorded speech
has attracted significant amount of attention in the speech commu-
nity. Several benchmarking tasks have been devoted to evaluate the
progress of this field, e.g. the REVERB challenge [2], CHiME-3/4
[3, 4] challenges, and the AMI meeting transcription task [5].

Microphone array beamforming is one of the most effective ap-
proaches to improve the robustness of far-field ASR. Due to the si-
multaneous recording of speech signals at different locations, a mi-
crophone array provides an extra spatial dimension in which the tar-
get signal and interference could be separable if they come from dif-
ferent directions. Several beamforming techniques have been stud-
ied for the robust ASR applications. The delay-and-sum (DS) beam-
forming [6] delays the microphone signals according to the time dif-
ference of arrival (TDOA) to synchronize and add all the channels
together to enhance the target signal. As the target signal is added
constructively while the interference signals are added destructively,

the signal-to-noise ratio (SNR) is improved. In DS, the TDOA or
steering vector needs to be estimated prior to the beamforming. A
more advanced beamforming is the minimum variance distortionless
response (MVDR) beamforming [7, 8], which also makes use of the
spatial information of the interference. The MVDR beamforming
minimizes the power of the beamformed signal, while keeping the
gain of the target direction at unity to preserve the target signal.

A critical component of the MVDR beamforming is the estima-
tion of the spatial statistics of the target speech and noise. The spatial
information of the target signal is included in the speech spatial co-
variance matrix (SCM) while the spatial and temporal information
of the noise is included in noise SCM. In practice, the noise SCM
can be estimated from the speech absent time-frequency (TF) bins,
while the speech SCM can be estimated from speech dominant TF
bins. Hence, the problem becomes the accurate estimation of a TF
mask which specifies whether a TF bin is speech dominant or noise
dominant. Several methods have been used for the TF mask esti-
mation. In [10], a complex Gaussian mixture model [11] is used,
where each source is represented by one Gaussian at each TF bin.
Recently, the studies in [12, 13, 14, 15] propose to use the long short-
term memory (LSTM) recurrent neural networks (RNN) to predict
the TF masks and significantly improved the ASR performance in
the CHiME-3 challenge. In these studies, the LSTM is trained to
predict the ideal binary masks (IBM) of the speech (and noise). The
IBMs are estimated from the ground truth speech and noise record-
ings with manually optimized thresholds during training stage.

In this paper, we investigate several ways to train the LSTM
mask predictor for further improving ASR performance. Motivated
by our recent success of joint optimization of acoustic model and
a beamforming network [16, 17], we propose to refine the LSTM
mask predictor by minimizing the ASR’s cost function directly. This
approach has two advantages. First, the mask predictor refined with
ASR cost will be more optimal for the ASR task in theory than the
mask predictor trained with IBMs. Second, the manual tuning in
creating the IBMs (e.g. the setting of thresholds) can be avoided,
which leads to more reliable and reproducible results. In addition,
we also investigate the multiple passes of mask estimation and find
it further boosts the ASR performance significantly.

The rest of the paper is organized as follows. In section 2, we
present the techniques for robust and optimal estimation of TF masks
for the MVDR beamforming. In section 3, experimental settings and
results are presented and discussed. In section 4, conclusions are
drawn and future works are discussed.
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Fig. 1. A computational graph that covers beamforming, feature ex-
traction, and acoustic modeling. The shaded boxes represent train-
able modules, while white boxes are deterministic modules.

2. TIME-FREQUENCY MASK ESTIMATION

2.1. System Overview

The proposed beamforming system for ASR is shown in Fig. 1.
There are two trainable modules in the diagram (shown in blue
color). One is the mask estimation and weight prediction module
and the other is the acoustic model. The rest modules are determin-
istic. The mask estimation module is trained to directly minimize
the ASR cost function. This can be achieved by training the mask
predictor using the gradients back-propagated from the ASR cost
layer, such as cross entropy of frame-level phone classification.
Although we can optimize the mask predictor and acoustic model
simultaneously, in this work, we freeze the acoustic model that is
already trained and only update mask predictor.

2.2. Mask Estimation

The details of the mask estimation subnet is shown in Fig. 2. From
the multi-channel input signals, we first extract the short time Fourier
transform (STFT) coefficients and log power spectrum for all chan-
nels. The complex-valued STFT coefficients will be used for SCM
estimation and beamforming, while the magnitude features are used
for mask prediction using an LSTM. Although phase information be-
tween channels could be useful for estimating TF masks, we choose
to work on single channel mask estimation in this work, following
the practice in [13]. One advantage of single channel mask predic-
tion is that the LSTM mask predictor can be applied to all kinds of
array configurations.

The network structure of LSTM based mask predictor is shown
in Fig. 3. The input features are the log power spectrum of current
frame, concatenated with its delta and acceleration versions. Hence,
the dimension of the input feature vector will be 3K where K is
the number of unique frequency bins. A single LSTM layer with H
memory cells are used. The hidden activations of the LSTM layer ht
are mapped to the speech mask vector ms

t and noise mask vector mn
t

using two different affine transforms. Sigmoid functions are applied
after affine transforms to ensure that the predicted masks contain
values between 0 and 1. The speech and noise mask estimations
share the same LSTM layer to reduce model parameters.
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Fig. 2. Details of mask prediction and MVDR weight estimation.
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Fig. 3. Structure of the LSTM based mask predictor.

As a pair of speech and noise masks are generated from each
input channel, we pool the masks over the channels to obtain one
pair of final masks as shown in the upper left part of Fig. 2. Four
types of pooling functions are compared, including mean, median,
min, and max. The pooling functions are applied to each TF bin
independently.

2.3. MVDR Weights Computation

With the estimated speech and noise masks, we estimate the SCMs
of speech and noise for each frequency bin as follows.

φss(f) =

∑T
t=1 m̂

s
t (f)yt(f)y

H
t (f)∑T

t=1 m̂
s
t (f)

(1)

φnn(f) =

∑T
t=1 m̂

n
t (f)yt(f)y

H
t (f)∑T

t=1 m̂
n
t (f)

(2)

where t and f are the time frame and frequency indices, respec-
tively. T is the number of frames in an utterance. yt(f) =
[yt,1(f), ..., yt,J(f)]

T is the vector of observed STFT coefficients
of all the J microphones. m̂s

t (f) and m̂n
t (f) are the predicted

speech and noise masks, respectively. In Equations (1-2). we are
estimating the average SCMs of each sentence. It is also possible to
estimate online SCMs by averaging over a moving window instead
of the whole sentence. The online estimation is left for future study.

After the SCMs are estimated, we can compute the MVDR

beamforming weights as w(f) =
φ−1
nn(f)φss(f)u

Tr(φ−1
nn(f)φss)

, where u is a
column vector whose elements are all 0’s except that the element
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corresponding to the reference channel (fixed to the first channel in
this study) being 1 [18]. Tr(·) denotes the trace of a matrix.

2.4. Training Cost Functions

Two types of cost functions are used to train the LSTM mask predic-
tor. The first cost function is the mean square error (MSE) between
the predicted masks and the IBMs. The IBMs of speech and noise
are obtained as follows

ms
t (f) = 1[βt(f) > θs] (3)

mn
t (f) = 1[βt(f) < θn] (4)

where 1[c] is an indicator function that equals to 1 if c is true and 0
otherwise. βt(f) is the oracle local SNR at frame t and frequency
bin f and can be obtained for simulated data for which we have
separated clean and noise signals. In previous works such as [13],
the thresholds θs and θn are set differently such that only confident
speech (noise) TF bins are marked as speech (noise) in the IBM.
This is to reduce the false alarm rate of mask estimation and produce
reliable SCM estimation. However, the optimal setting of the thresh-
olds may require manual tuning. In this work, we use the training
on IBMs only to initialize the mask predictor. Hence, we first set
θs = θn = 0dB although it is not optimal for ASR. We then ap-
ply the fine tuning of mask predictor on ASR to optimize the mask
prediction for the ASR task.

After the MSE training of mask predictor, we plug the pretrained
model into the graph in Fig. 1 and fine tune the LSTM with ASR cost
function (cross entropy of frame level senone classification). As only
speech masks are predicted in the MSE training stage, we need to
initialize the affine transform for noise mask (see Fig. 3) as An =
−As and bn = −bs , where As and bn are the linear transform and
bias vector for speech mask prediction. Such initialization makes the
initial noise mask and speech mask sum to 1 for all TF bins.

3. EXPERIMENTS

We evaluate the performance of the proposed methods on the
CHiME-4 speech recognition challenge [4]. The official ASR
baseline system is used except for two changes. First, to facili-
tate learning in Fig. 1, Mel-frequency cepstral coefficients (MFCC)
features with feature space maximum likelihood linear regression
(fMLLR) speaker adaptation is replaced with log Mel filterbank
features. This is because it is difficult to pass the gradient through
the speaker adaptation stage as the fMLLR transforms are estimated
dynamically on the features, which depends on the beamforming
module. The filterbank feature vectors (40 dimensions) are pro-
cessed by utterancewise mean normalization. No pre-emphasis or
DC removal is applied. Delta and acceleration features are appended
and then 11 frames of feature vectors are cascaded to form the input
for the DNN acoustic model. Second, the acoustic model is trained
from data pooled from all the 6 channels of the training data, as we
found that training with all channels increase the robustness of the
acoustic model on evaluation data.

The LSTM mask predictor contains only one hidden layer with
1024 memory cells. 512-point fast Fourier transform is used for
beamforming, resulting in 257 dimensional mask vectors for each
frame. For the fineing with ASR cost function, we plug in the
MSE trained mask predictor and cross entropy (CE) trained acoustic
model into the graph in Fig. 1, and only update the mask predictor
but freeze the acoustic model. In this way, we can optimize the mask
predictor specifically for an existing acoustic model.

Table 1. Recognition word error rate (WER %) on the CHiME-4
6-channel track. “Split Mask” specifies whether we estimate speech
and noise masks separately. LM: “3” means trigram, “5” means 5-
gram, while “R” is RNN LM rescoring.

#ch for 

mask

ASR 

cost

Split 

Mask
Pooling #Pass LM Real Simu Real Simu

1 12.4 14.8 21.6 22.0

2 8.2 9.4 13.6 14.2

3 7.6 6.6 12.0 8.2

4 No 1 8.3 7.1 12.8 19.5

5 1 7.3 6.4 10.9 15.2

6 3 6.4 6.1 9.4 11.1

7 1 6.5 6.1 10.1 11.9

8 3 6.1 6.0 9.0 9.9

9 max 1 6.6 6.0 10.2 10.0

10 min 1 6.6 6.0 10.3 8.9

11 mean 1 6.4 5.9 9.8 9.2

12 1 6.2 6.0 9.5 8.9

13 3 6.1 5.9 8.9 9.6

14 3 5 4.8 4.9 7.4 7.9

15 3 R 4.1 4.3 6.3 6.9
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3.1. Baseline Results

The ASR performance of the proposed methods and baselines are
shown in Table 1 in terms of word error rates (WER). Two base-
line systems are used, one is official CHiME-4 baseline which is a
delay-and-sum (DS) beamformer implemented in the BeamformIt
toolkit [19]. The BeamformIt uses Viterbi decoding to track time
difference of arrival of target signal and also estimates the gains of
the target signal in the channels. It is observed from the table that
the DS beamforming (system 2 in the table) produces significant im-
provement over the 1-channel track, e.g. WER on real eval set re-
duced from 21.6% to 13.6%. The MVDR beamforming (system 3)
is found to outperform the DS beamforming of BeamformIt. We
used the MVDR beamforming proposed in [20] which uses eigen-
decomposition based signal gain estimation. Note that the MVDR
makes use of the noise information (both estimated within the test
sentence and the 0.5s noise immediately before the test sentence)
while the DS beamforming does not.

From system 4 onwards in Table 1, we examine the results ob-
tained by MVDR beamforming using masks prediction. System 4
predicts speech mask from only the first channel of the array and
MSE trained LSTM. The results of system 4 are slightly worse than
the MVDR baseline, except a big increase in WER for the simulated
eval set, which is due to the fact that the first channel of this test
set is much noisier than other channels, hence resulting in poorly
predicted mask and beamforming.

3.2. Fine Tuning Mask Predictor with ASR cost

We first examine whether refining the LSTM mask predictor by us-
ing the ASR cost function improves the performance of ASR. By
comparing system 5 and 4, it is observed that the refinement im-
proves the performance in every test set significantly. Note that we
still only predict speech mask in system 5, so the number of free pa-
rameters are the same for both systems and the improvement is only
from the use of ASR cost function.
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We also examine the masks generated by system 4 and 5 in Fig.4
(a-b). For both systems, the noise and speech masks sum to 1 for
every TF bin. It is observed that both systems produce reasonable
speech masks, except that the baby crying (high-pitch harmonics
from frame 300) also appears in the speech mask. System 5 (re-
fined by ASR cost) predicts slightly better mask than system 4 in
that the baby’s crying is largely removed in the speech mask. We
also observe that the system 5 generally assigns more TF bins to
speech mask and less bins to noise mask, as compared to system
4 (the MSE training with IBMs). This effect is simiar to using a
smaller threshold θs in (3).

3.3. Separate estimation of noise and speech masks

We then examine the effect of estimating the speech and noise masks
separately. By comparing system 5 (only estimate speech mask) and
7 (estimate two masks separately), it is observed that the separate
estimation of the two masks is beneficial for ASR. Comparing the
masks generated from system 5 and 7 in Fig. 4, it is observed that
the separately estimated speech and noise masks are more conser-
vative than their counterparts produced by system 5. Those TF bins
containing both significant energy of speech and noise do not appear
in both the speech and noise masks. Such masks could result in purer
estimation of speech and noise SCMs and hence better beamforming
performance. In [12, 13], it is also encouraged to predict more con-
servative masks by setting θs larger than θn in (3-4). An advantage
of using the ASR cost function for training is that we don’t need
to set any thresholds manually. Fig. 4 shows the clean, noisy, and
beamformed (by system 7) log spectrum. Significantly improved
spectrum is observed. The power of the baby crying is also reduced.

3.4. Multiple passes of mask estimation

Next, we investigate the effect of multiple-pass mask estimation on
ASR performance. As the input speech is significantly improved
by beamforming, it is reasonable to use the beamformed signal for
more accurate mask estimation. Such process could repeat several
times and the masks could be improved iteratively. Note that the
same LSTM mask predictor is used in all the passes. By comparing
systems 5 to 6, and systems 7 to 8, we observe that using 3 passes of
mask estimation significantly boosts the performance of ASR, pro-
ducing up to about 20% relative WER reduction on various test sets.

3.5. Pooling of masks of multiple channels

Finally, we compare different pooling strategies for combining the
masks predicted from all channels. By comparing system 7 to sys-
tem 9-12, we observe that most pooling functions improve the per-
formance of ASR, with median pooling be the best and max pooling
the worst. In [13], median pooling is also used.

We also combine all the techniques investigated above in system
13. Comparing system 13 to system 12, performance is improved
except for eval simu set. Comparing system 13 to system 8, per-
formance is marginally improved for all test sets. The results show
that the multi-pass mask estimation and mask pooling, both improv-
ing the ASR independently, are not working well with each other.
One reason could be that the mask predictor are trained without the
knowledge of multi-pass mask estimation or pooling. More optimal
way is to include these steps in the graph of Fig. 1 during training.
We will investigate this direction in the future. The best WER ob-
tained by mask based MVDR is 8.9% for real eval set. This represent
a 3.1% absolute WER reduction compared to conventional MVDR

Bin 1

Bin 257

(a) Speech Mask (b) Noise Mask

Frame number

(c) Clean spectrum (d) Noisy spectrum

(e) Beamformed spectrum

Fig. 4. Predicted masks for utterance “F01 423C020L BUS” (up
to 5s) in dt05, bus condition, simulated set. (a-b) speech and noise
masks generated by system 4 (top), system 5 (middle), and system 7
(bottom). (c) clean spectrogram. (d) noisy spectrogram (channel 1).
(e) enhanced spectrogram by system 7. Log spectrogram in (c-e) are
mean normalized. There are baby crying from frame 300.

beamforming, despite the fact that the proposed method does not use
TDOA tracking and noise samples before the test utterances, which
are both used in the MVDR baseline of system 3.

Matlab based recipes for both the MSE and CE training of mask
predictor for the CHiME-4 task are available in [21].

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigated several ways to improve the mask-
based MVDR beamforming for the ASR application. The main idea
is to fine tune the mask predictor to directly minimizing the ASR cost
function. This not only improves performance of the MVDR beam-
forming, but also reduces the heuristics in designing the IBMs in the
training stage. We also showed that several other methods also im-
prove the ASR performance, including separate estimation of noise
and speech masks, multiple passes of mask estimation, and pooling
of masks of different channels. Significant improvement is obtained
by using the proposed methods over baseline MVDR beamforming.
In the future, we will extend the current work in several ways, such
as online tracking of moving speakers and noise statistics.
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