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ABSTRACT

The sampling of sound fields involves the measurement of spatially
dependent room impulse responses, where the Nyquist-Shannon
sampling theorem applies in both the temporal and spatial domains.
Therefore, sampling inside a volume of interest requires a huge
number of sampling points in space, which comes along with further
difficulties such as exact microphone positioning and calibration of
multiple microphones. In this paper, we present a method for mea-
suring sound fields using moving microphones whose trajectories
are known to the algorithm. At that, the number of microphones is
customizable by trading measurement effort against sampling time.
Through spatial interpolation of the dynamic measurements, a sys-
tem of linear equations is set up which allows for the reconstruction
of the entire sound field inside the volume of interest.

Index Terms— Room impulse response, plenacoustic function,
dynamic measurement, microphone array, perfect sequence

1. INTRODUCTION

Sound fields within closed rooms are characterized by reverberation,
which decreases the performance of applications such as multichan-
nel sound systems or speech recognition devices, since they assume
a free-field environment. However, exact knowledge of the sound
field inside a volume of interest enables us to remove acoustic scene
effects by listening room compensation, and thus allows for a per-
formance improvement within a wide range of applications.

There are several stationary methods available for the measure-
ment of room impulse responses (RIRs). Common approaches are
the use of perfect sequences [1, 2], maximum-length sequences
(MLS) [3, 4], and exponential sine sweeps [5]. In all of these
cases, the RIRs can be obtained by correlation techniques with
a very low computational demand. For setups with time-varying
RIRs, such as acoustic echo cancellation (AEC) [6], the common
approach is to demand a minimum mean squared error (MMSE)
between the measured signal and the output of an adaptive filter
that is excited by the same input as the loudspeaker. Of course,
the method can also be used to measure time-invariant RIRs. In
this case, an excitation with white noise would be preferable, be-
cause it provides maximum convergence speed [7]. In [8, 9], the
concept of the plenacoustic function (PAF) has been introduced.
Generally, the PAF encapsulates the information on the entire set of
spatio-temporal RIRs for any position in space. The sampling of the
PAF by considering equidistant sampling points in space that satisfy
the Nyquist-Shannon sampling theorem is not practical. In [10], a
setup with moving microphones was studied. Applications include
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the simulation of time-varying channels that are governed by the
wave equation and the computation of frequency-dependent update
rules for adaptive algorithms. There is also an existing method for
the dynamic measurement of a set of RIRs using one microphone
that moves along a given trajectory [11]. Despite the motion of
the microphone, the RIRs are reconstructed for all points along the
trajectory. In particular, motion along a line and a circle have been
studied. To make this principle work, a specially designed input
signal is needed, and the speed of the microphone must be constant
and is restricted to an upper limit. Quite different from RIR mea-
surements with a fixed microphone, the excitation signal must not
contain all audio frequencies, but only a certain subset. The omitted
frequencies are essentially generated through the Doppler effect.
The technique is suited to record relatively short RIRs and has also
been proposed to record head related transfer functions (HRTFs)
with a microphone that moves along a circular trajectory around the
head.

In this paper, we propose an approach which allows for the mea-
surement of the PAF using a moving array with a manageable num-
ber of microphones. Through spatial convolution, and interpolation
of the dynamic measurements, a system of linear equations is set
up which allows for a reconstruction of the sound field inside the
considered volume. This method is totally different from the above-
mentioned dynamic measurement procedure. It does not require spe-
cific demands, neither on the excitation signal nor on the speed of the
microphone or microphone array.

The paper uses the following notations. The operator diag { · }
turns a vector into a diagonal matrix. The trace of a matrix is indi-
cated by tr{ · }. ID×D denotes the D×D identity matrix. The unit
pulse is represented by δ(n), which equals 1 for n = 0 and 0 else-
where. The modulo operation is denoted by amod b, which gives
the remainder after the division of a by b.

2. UNIFORM SAMPLING OF SOUND FIELDS

Measuring the sound field is basically a sampling problem. Under
the assumption that the sound field is bandlimited, it can be recon-
structed through equidistant sampling in both time and space dimen-
sions. In the following, we first introduce the notation for the plena-
coustic function and consider its uniform sampling in time domain.
Then we describe its sampling in space.

2.1. The Plenacoustic Function

For a fixed pair of source and listener positions in space, the room
impulse response h(t) characterizes the time t dependent received
sound waves that result from a Dirac impulse emitted at time t = 0.
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For an excitation signal s(t), the observed signal is given by

x(t) =

∫ ∞
−∞

h(τ)s(t− τ)dτ. (1)

In [8, 9], the concept of the plenacoustic function has been in-
troduced encapsulating all RIRs of a room for a given source config-
uration. The PAF, denoted in the following as p(r, t), describes the
sound field in space depending on both time t and receiver location
r = [rx, ry, rz]

T . In the simplest case, with the single point source
emitting one signal s(t) at fixed position, the PAF is

p(r, t) =

∫ ∞
−∞

h(r, τ)s(t− τ)dτ, (2)

where h(r, t) is the spatially varying RIR from the source location
to the point r. Through the LTI system model, the PAF for multiple
fixed sound sources consists of a sum of integrals as given in (2).
This means, the received sound pressure is a superposition of single
source signals, each of them convolved with their specific spatio-
temporal RIR. Referring to [8, 9], we consider the PAF, without loss
of generality, only for the case where a single source at fixed position
emits a Dirac impulse at t = 0. With this, the PAF is simplified to
the spatio-temporal RIR: p(r, t) = h(r, t).

For the uniform sampling of a bandlimited RIR or PAF in
time, let T denote the sampling interval leading to measurements at
equidistant sampling points tn = nT with n ∈ Z being the discrete
time variable. According to the Nyquist-Shannon sampling theorem
and considering the cutoff frequency fc, the sampling frequency
fs = 1/T has to fulfill the condition fs > 2fc in order to avoid
aliasing.

2.2. Equidistant Sampling in Space

The uniform sampling in space requires a Cartesian grid where the
equidistant sampling points rg ∈ G are given by the set

G =
{
rg | rg = r0 + [gx∆, gy∆, gz∆]T

}
, (3)

with the grid origin r0 and the discrete grid variables in g =
[gx, gy, gz]

T ∈ Z3. In order to avoid spatial aliasing, the sampling
interval for each spatial dimension x, y, z must follow

∆ <
c0
2fc

, (4)

where c0 is the speed of sound [8]. Because of (4), the uniform
sampling of the sound field by use of equidistantly spaced micro-
phones often requires an extremely high effort. An array of micro-
phones will most likely never be dense enough to enable measure-
ments without significant problems for very high audio frequencies.
For example, the sampling of the PAF with fc = 17 kHz inside a
volume of 1 m3 requires at least 106 spatial measuring points. In or-
der to reduce this infeasible effort, sampling schemes with quasi ran-
domly spaced microphones have been proposed, based on the princi-
ple of compressed sensing [12]. However, the maximum admissible
audio frequency within larger volumes is still significantly reduced.

A specific problem of microphone arrays is the need for calibra-
tion. This includes the compensation of spatio-temporal deviations
and the equalization of the frequency responses of the individual mi-
crophones. The use of more microphones involves an increasing
expense for calibration. In the following section, we propose a dy-
namic sampling procedure using a moving array with a manageable
number of microphones.

3. THE PROPOSED DYNAMIC SAMPLING

To determine the sound field within a volume of interest, we consider
a scenario in which a single source emits a pre-defined signal and
one or more microphones are moved through the volume while their
signals are simultaneously recorded together with the microphone-
position information.

3.1. Model of Virtual Grid in Space

The core of our method is to determine RIRs at equidistant positions
by use of dynamic measurements. For that purpose, a virtual sam-
pling grid in space that fulfills (4) is modeled, with integer indices
in g spanning the virtual grid coordinate system. The RIRs on that
grid are denoted as h(rg, tn). The spatial sampling grid is limited
to size X × Y × Z. Overall, the recovery of h(rg, tn) inside the
finite volume of interest involves N = XY Z RIRs at grid positions
g ∈ G = {0, . . . , X−1}×{0, . . . , Y −1}×{0, . . . , Z−1}. In the
following, the grid RIRs are denoted by h(g, n) using the discrete
variables.

3.2. The Proposed Method

The RIR at any location within the volume of interest can be com-
puted via interpolation from h(g, n), including the locations on
the microphone trajectory. In fact, this interpolation is the key
to our method. To keep the following description and analysis
simple, a single microphone is considered. The extension to Q
microphones is straightforward. Of course, the number of micro-
phones can be traded against the total measurement time, allowing
for compromises with a reasonable number of microphones and
measurement time. The simplest setup involves only one hand-
held microphone which position is tracked. According to (2),
each sample x(n) recorded by the dynamic microphone at position
r(n) = [rx(n), ry(n), rz(n)]T contributes an equation of the form

x(n) =

L−1∑
k=0

h(r(n), k) s(n− k) + η(n) (5)

with η(n) being the measurement noise. The interpolation of the
spatially varying RIR h(r(n), n) from the RIRs at the virtual posi-
tions rg leads to

x(n) =

L−1∑
k=0

∑
g∈G

ϕ(r(n), rg)h(g, k) s(n− k) + η(n), (6)

where ϕ(r(n), rg) is an interpolation function weighting the sought
RIRs on the modeled grid subject to the displacements r(n) − rg .
Due to the finite support in space, the virtual grid has to be cho-
sen well below the Nyquist rate (4). Then, an interpolation kernel
which is maximally flat in the frequency domain may provide suf-
ficient results. This is shown in the experimental part of this paper.
Nevertheless, the interpolation is assumed to be ideal in the follow-
ing considerations. The sought RIRs on the virtual grid, assumed
to be of lengths L, are encapsulated in the vector h ∈ RNL by the
concatenation

h =
[
hT1 ,h

T
2 , . . . ,h

T
N

]T
, (7)

where hu = [h(gu, 0), . . . , h(gu, L− 1)]T contains the RIR in-
dexed by u ∈ {1, 2, . . . , N} on the virtual grid. Using (6) and (7),
the system of linear equations

x = Ah+ η (8)
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is set up with measurement vector x = [x(0), . . . , x(M − 1)]T ,
noise vector η = [η(0), . . . , η(M − 1)]T , and system matrix A ∈
RM×NL. The system matrixA possesses the block structure

A =
[
Φ1S,Φ2S, . . . ,ΦNS

]
, (9)

where Φu ∈ RM×M is a diagonal matrix stacking all M interpola-
tion coefficients for the u-th virtual grid RIR,

Φu = diag {ϕ(r(0), rgu), . . . , ϕ(r(M − 1), rgu)} , (10)

and S ∈ RM×L is the convolution matrix of the source signal. Ide-
ally, the trajectory determining the matrices Φu is chosen to ensure
that matrix A has full column rank. Then, the linear system (8)
is not underdetermined and its unique least-squares solution yields
the estimate of h(g, n). For the underdetermined case, methods of
compressed sensing can be used, since the sound field holds highly
structured sparsity in frequency domain: the spectrum of the PAF
in 3D space lives on the 3D surface of a 4D hypercone along the
temporal frequency axis [9].

3.3. Error Analysis for Spectrally Flat Excitation

Let the excitation signal s(n) be a perfect sequence with period
length L and autocorrelation rss(m) = σ2

s δ(mmodL), where σ2
s

is the signal power. Thus, for one period in steady state,

SST = Lσ2
sIM×M . (11)

Let η be independent and identically distributed white noise with
covariance matrix Rηη = E{ηηT } = σ2

ηIM×M . The parameters
in h are assumed to have zero mean and variance σ2

h, so the auto-
covariance matrix of h isRhh = E{hhT } = σ2

hIU×U . Regarding
this model, the use of the MMSE estimator for (8) yields the error
covariance matrix [15]

Ree = E{[ĥ− h][ĥ− h]T } = σ2
h[IU×U +

σ2
h

σ2
η

ATA]−1. (12)

Using (12) and the relationship

tr{[IS×S +BCT ]−1} = tr{[IW×W +CTB]−1} − (W − S)
(13)

for matricesB andC of size S×W , the MMSE for the model with
M = NL can be described as

MMSE = σ2
h tr{[IM×M +

σ2
h

σ2
η

AAT ]−1}. (14)

Following (9), (11), and (14) leads to the estimation error

MMSE = σ2
h

M−1∑
n=0

1

1 +
σ2
h
σ2
η
Lσ2

s

∑N
u=1 ϕ

2(r(n), rgu)
. (15)

By reference to the expression (15), the estimation error depends
on the interpolation coefficients ϕ(r(n), rgu), and, thus, on the tra-
jectory r(n). Given that

∑N
u=1 ϕ(r(n), rgu) = 1 and assuming

nonnegative interpolation coefficients, (15) will be minimal when
the coefficients are either zero or one, independent from the actual
interpolation accuracy. This means that it would be optimal to sam-
ple only on the virtual grid positions. The worst case occurs when
the interpolation yields consistently equal coefficients, which corre-
sponds to sampling only in the middle between the grid positions.
This worst case can be avoided in practice by considering the grid
origin a free parameter and adjusting the grid accordingly.

4. TIME-DECOUPLING USING PERFECT SEQUENCES

The periodic excitation by pseudo-random noise s(n) ensuring
(11), enables us to decompose the large system (8) with NL un-
knowns into L smaller systems of linear equations, each having
N unknowns. The excitation by R periods of the pseudo-random
signal allows for M = RL measurements and leads to the RL× L
convolution matrix

SR =
[
ST , . . . ,ST

]T
. (16)

Using (8), (9), (11), and γ = Lσ2
s , the measurement process can be

reformulated as

x =

N∑
u=1

ΦuSRS
TSγ−1hu + η. (17)

By defining the modified RL×NL system matrix

Ã =
[
Φ1SRS

T ,Φ2SRS
T , . . . ,ΦNSRS

T
]

(18)

and encapsulating the transformed grid RIRs Sγ−1hu into

h̃ =
[
[Sγ−1h1]T , [Sγ−1h2]T , . . . , [Sγ−1hN ]T

]T
, (19)

the new system of linear equations

x = Ãh̃+ η (20)

is obtained. Due to (11), the matrix Ã consists of R ×N blocks of
L×L diagonal matrices which allow to decouple the time dimension
by decomposing the large system of size RL × NL into L smaller
problems

x` = Ã`h̃` + η` ` ∈ {1, . . . L}, (21)

with the sub-vectors x`, h̃`, η` of length R containing every
L-th value of the complete vectors, and the sub-system matrix
Ã` ∈ RR×N whose element in row i and column j is given by

[ Ã` ]i,j = γ ϕ(r((i− 1)L+ `), rgj ). (22)

Due to this reformulation, the computational demand for recon-
structing the sound field is heavily reduced.

5. EXPERIMENTS AND RESULTS

For the following experiments, we simulated RIRs and microphone
measurements by use of the image source method [16], considering
a room of size 5.8 m× 4.15 m× 2.55 m. The reverberation time of
the room was chosen as RT60 = 0.3 s. The cutoff frequency of the
RIRs was fc = 4 kHz. According to the Nyquist-Shannon sampling
theorem (4), spatial intervals ∆ ≤ 0.04 m are required for the virtual
grid. The position of the sound source was set to [1.4, 1.6, 1.0]T in a
world coordinate system with unit 1 m. The origin of the virtual grid
G, as in (3), was set to r0 = [2.75, 1.4, 0.8]T . Binary MLSs with
power σ2

s = 1 and period lengths of Lp ∈ {511, 1023}, depending
on the lengths of the sought RIRs, were used as excitation signals
in the experiments. The measurements were simulated in a steady-
state room, assuming periodic excitation starting at n = −Lp. We
sampled the PAF on a plane at height 0.8 m by setting Z = 1 in G.
The 3D problem can be seen as a stack of multiple plane grids.

As evaluation criterion for the quality of the PAF, we use the
mean normalized system misalignment [17, 18]

MNSM =
1

N

N∑
u=1

‖hu − ĥu‖2`2
‖hu‖2`2

, (23)
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Table 1. MNSM [dB] of the RIRs on a 5 × 5 grid, depend-
ing on levels of measurement noise. Results for the static method
with 25 microphones and the new proposed dynamic method using
Q ∈ {25, 20, 15, 10, 5} microphones. Measurements are performed
exactly on grid positions.

SNR [dB]
Sampling 10 20 30 40 50 60 70
Static 0.43 -9.55 -19.53 -29.57 -39.45 -49.45 -59.51
Dyn-25 0.49 -9.60 -19.61 -29.49 -39.47 -49.58 -59.52
Dyn-20 1.71 -8.28 -18.28 -28.37 -38.29 -48.40 -58.26
Dyn-15 3.10 -6.94 -16.98 -26.98 -37.00 -46.97 -56.97
Dyn-10 4.72 -5.31 -15.26 -25.31 -35.27 -45.33 -55.27
Dyn-5 7.51 -2.49 -12.59 -22.47 -32.47 -42.50 -52.58

with hu ∈ RL containing the true RIR and ĥu ∈ RL being the
reconstructed RIR at grid index u.

The first experiment is devoted to a proof of concept of the gen-
eral validity of the new approach. For this, we compare the best
possible dynamic sampling with the conventional static technique.
That is achieved by constraining the sampling positions of the dy-
namic procedure to the points of the spatial grid. This avoids all
interpolation errors and additionally leads to optimal interpolation
coefficients according to (15). The spatial grid was modeled with
sampling interval ∆ = 0.02 m and X = Y = 5. The lengths of the
RIRs were set to L = 500. An MLS with R = 10 periods and pe-
riod length Lp = 511 was used. For the static method, we measured
the 25 RIRs on the spatial grid by correlating each measurement sig-
nal with one period of the MLS and averaging over all R periods
[3, 4]. For estimation of the baseline of the recovery quality, dif-
ferent noise conditions were considered. The MNSMs for different
signal-to-noise ratios SNR = σ2

s/σ
2
η can be seen in the first line of

Table 1. For the dynamic method, five different setups were consid-
ered. The first one used also Qmax = 25 microphones. The dynamic
sampling was achieved by random rotations of the microphone array
around its center. After taking a sample, the array was rotated by a
multiple of π/2. This method fulfills the requirement rq(n) ∈ G
for all n and all microphones q. The other setups used a smaller
number Q ∈ {20, 15, 10, 5} of microphones which allowed addi-
tional translations with a multiple of ∆. For the dynamic recovery,
we tested both, the least-squares solution of the large system (8),
and the least-squares solutions of the 511 time-decoupled systems
(21). Both strategies led to the same recovery results, which are also
given in Table 1. The comparison with the first line shows that the
dynamic sampling with 25 microphones is as good as the static one
for all noise levels. The reduction of the number of microphones
leads to a smaller number of measurements and therefore a smaller
number of equations describing the sought RIRs. The reduced qual-
ity of reconstruction follows closely ∆MNSM = 10 · log10 (Qmax/Q)
for all noise levels.

In a further experiment, we tested the dynamic recovery tech-
nique for spatial grids with different sampling intervals. Each of the
virtual grids involved 400 RIRs with X = Y = 20. The lengths
of the RIRs were set to L = 1000. An MLS with Lp = 1023 was
used for excitation. The dynamic measurements were taken by only
one moving microphone over R = 1000 periods. Solving the sys-
tem (8) for recovery would involve 4 · 105 unknowns in this case.
Hence, we decoupled the time dimension and solved the linear sys-
tems (21) for least-squares, each comprising only 4 · 102 unknowns.
For trajectories with uniformly distributed measurement positions on
the grid, we observed that the accuracy of the sound field recovery
decreases on outer grid positions. Hence, we tested Lissajous trajec-
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Fig. 1. Recovery results for a Lissajous trajectory, depending on the
spatial sampling interval of the virtual grid and interpolation method.

tories, which provide a high density of sampling points in curves at
the boundary of the grid. The results for a Lissajous trajectory with
frequency ratio of 17/16 are shown in Fig. 1. We tested both the lin-
ear interpolation and the Lagrange interpolation for reconstruction.
For the uniform grid in space, the Lagrange interpolator is equivalent
to a maximally flat finite impulse response filter, as both obtain the
same coefficients [19]. Here, the maximum degree of the interpola-
tion polynomial was limited to 19, depending on the measurement
position.

In the case of sampling at the Nyquist rate (∆ = 0.04 m), both
interpolation methods lead to almost the same recovery quality. With
spatial oversampling, the performance increases in all cases. How-
ever, the Lagrange interpolation gives a clearly better reconstruction
than the linear one. Additionally, its performance shows a plateau
for more than a twofold spatial oversampling (∆ < 0.02 m).

6. CONCLUSION

In this paper, we proposed a new method for the measurement of
sound fields using moving microphones. With known trajectories
and excitation signal, a system of linear equations has been derived,
which leads to the estimation of spatially dependent RIRs on an
equidistant virtual grid. In order to reduce the computational com-
plexity perfect sequences has been used. The method has been tested
using two different interpolators and various spatial intervals. A
potential application of the proposed method is the high-precision
measurement of sound fields using hand-held microphones whose
positions are continuously tracked, e.g., using gyroscopes. Further
extensions based on the theory of compressed sensing for trajecto-
ries that lead to ill-conditioned linear systems are currently under
investigation.
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