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ABSTRACT

A new method for designing single/multiple unimodular wave-
forms with good weighted correlation properties, which is
based on minimizing the weighted integrated sidelobe levels
of waveforms, is developed. The main contributions of the
paper lie in formulating the objective as a quartic form where
Hadamard product of matrices is involved, converting the non-
convex quartic optimization problem into a quadratic form
and then solving it by means of majorization-minimization
technique which seeks to find the solution iteratively. Corre-
sponding algorithm enables good weighted correlations of the
designed waveforms and shows fast convergence compared
with existing methods.

Index Terms— Majorization-minimization, radar, wave-
form design, weighted correlations.

1. INTRODUCTION

Waveform design [1]–[4], which is a part of research areas
such as radar signal processing [5]–[13], active sensing [14]–
[16], communications [17], etc., has been a research field of
significant interest for several decades. It plays an impor-
tant role especially in radar signal processing since excellent
waveforms can ensure good localization accuracy [5], high
resolution [9], and superior delay-Doppler ambiguity of the
potential target [18]. Besides, robust or adaptive waveform de-
sign can deal with heterogeneous clutter mitigation and active
jammer suppression [3]. One of the most important factors
that determine the quality of waveforms is the correlation prop-
erty, i.e., the auto- and cross-correlations between different
time lags of the designed waveforms. This property is of great
importance for radar since perfect correlations indicate that
the transmitted waveforms are uncorrelated to any of their
time-delayed echoes, meaning that the target at the range bin
of interest can be easily extracted after matched filtering, and
the sidelobes from other range bins are unable to attenuate it.
On the other hand, despite the rapid progress in developing
modern hardware of amplifiers, waveforms with constant mod-
ulus are still preferable compared to other counterparts due to
their constant energy at any time lag, which can reduce the
cost of hardware.

There has been an extensive literature on waveform design

for radar applications. The integrated sidelobe level (ISL),
which serves as an expression for characterizing waveform
correlation properties and evaluating accumulated sidelobes
at all non-zero time lags, is typically used. To design a sin-
gle waveform via ISL minimization, [11] has proposed to
design unimodular waveform in the frequency domain using a
cyclic procedure of iterative calculations. A substitute objec-
tive function that is minimized by cyclic algorithm has been
introduced. The methods associated with ISL and weighted
ISL (WISL) minimization therein have been named as CAN
and WeCAN, respectively. These methods have been later ex-
tended to multiple-input multiple-output radar case [12]. The
work of [19] has dealt with the same ISL minimization problem
as CAN but has addressed it via majorization-minimization
(MaMi) technique [20]–[22]. WISL minimization problem for
waveform design has been considered in [23].

In this paper, we aim at designing single or multiple wave-
forms with good weighted correlation properties. The WISL
metric is used as the designing criterion for obtaining the opti-
mal set of unimodular waveforms. We derive the objective of
the formulated WISL minimization based problem in a non-
convex quartic form, specifically, as the sum of two quartic
components where Hadamard product of matrices is highly
involved. We convert this quartic optimization problem into
a quadratic form, and solve it by means of MaMi technique
where majorized objective functions are properly selected. The
solution to the WISL minimization based design problem is
achieved efficiently in a way of iterative calculations. Corre-
sponding algorithm which enables good weighted correlations
of the designed waveforms and shows fast convergence is
proposed.

2. PROBLEM FORMULATION

Consider designing a set of M unimodular waveforms, de-
noted by the P ×M matrix Y , [y1, . . . ,yM ], whose mth
column ym , [ym(1), . . . , ym(P )]T is the mth launched
waveform of length P . Here, (·)T stands for the transpose
operation, and the elements of ym are denoted as ym(p) =
ejψm(p), p = 1, . . . , P with ψm(p) being an arbitrary phase
value ranging between −π and π. The main problem of wave-
form design lies in synthesizing Y which gives good weighted
correlation properties.
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The WISL of the waveform matrix Y can be expressed as

ζ =

M∑
m=1

P−1∑
p=−P+1
p 6=0

γ2p |rmm(p)|2 +

M∑
m=1

M∑
m′=1
m′ 6=m

P−1∑
p=−P+1

γ2p |rmm′(p)|2

(1)

where rmm′(p) ,
∑P
k=p+1 ym(k)y∗m′(k − p) stands for the

cross-correlation level of the mth and m′th waveforms at the
pth time lag, {γp}P−1p=−P+1 are real-valued symmetric weights
used to control the sidelobe levels corresponding to different
time lags, i.e., γp = γ−p, p ∈ {1, . . . , P − 1}, and |·| and (·)∗
are modulus and conjugation operators, respectively. Zero-
valued element of γp means that the sidelobe level associated
with the pth time lag is not considered. Therefore, the prob-
lem of unimodular waveform design associated with WISL
minimization can be expressed as

min
y

ζ s.t. |ym(p)| = 1, m = 1, . . . ,M ; p = 1, . . . , P

(2)

where the constraint ensures the modularity of waveforms.

3. UNIMODULAR WAVEFORM DESIGN

After transforming (1) into frequency domain and performing
some derivations, then the WISL ζ can be expressed as [12]

ζ =
1

2P

2P∑
p=1

∥∥YH
(
(apa

H
p )� Γ

)
Y − γ0P IM

∥∥2 (3)

where ap ,
[
1, ejωp , . . . , ej(P−1)ωp

]T
, p = 1, . . . , 2P with

ωp , 2π
2P p, Γ is a P × P Toeplitz matrix constructed by

the weights {γp}P−1p=0 , � and (·)H are Hadamard product and
Hermitian operators, respectively, and IM is an M -dimension
identity matrix.

In order to solve (2) efficiently, we start by simplifying (3)
and select to rewrite it into proper quadratic form. Expanding
the square of norm in (3) yields the expression, i..e,

ζ =
1

2P

2P∑
p=1

(∥∥YH
(
(apa

H
p )� Γ

)
Y
∥∥2 + γ20MP 2

− 2γ0P tr
{
YH
(
(apa

H
p )� Γ

)
Y
})
. (4)

Note that
2P∑
p=1

tr
{
YH
(
(apa

H
p )�Γ

)
Y
}

= tr

{
YH

(
2P∑
p=1

(
apa

H
p

)
�Γ

)
Y

}
= 2P tr

{
YH(IP � Γ)Y

}
= 2γ0P‖Y‖2 = 2γ0MP 2 (5)

where the properties
∑2P
p=1 apa

H
p = 2P IP and tr

{
YHY

}
=

‖Y‖2 have been used in the derivation. Therefore, we only
need to consider the first component of the sum on the right
hand side of (4).

Let Γ =
∑K
k=1 λkqkq

H
k =

∑K
k=1 ukv

H
k be the general

eigenvalue decomposition of the weight matrix Γ which can be
non-positive semi-definite, where λk and qk, k ∈ {1, . . . ,K}
are the kth eigenvalue and eigenvector, respectively, uk ,√
λkqk is a P × 1 vector, vk equals −uk when λk is negative,

otherwise it is the same as uk, and K is the rank of Γ. After
some derivations, the first component of the sum in (4) can be
further expressed as

2P∑
p=1

∥∥YH
(
(apa

H
p )� Γ

)
Y
∥∥2 =

2P∑
p=1

K∑
k=1

K∑
k′=1

(
yH
((

ApA
H
p

)
�Γr

kk′)y)
2

+
(
yH
((

ApA
H
p

)
� Γi

kk′
)
y
)2

(6)

where Ap , IM ⊗ ap, y , vec(Y) =
[
yT
1 , . . . ,y

T
M

]T
is the MP × 1 vectorized version of Y, Γr

kk′ , IM ⊗(
ukv

H
k′ + vk′u

H
k

)
/2 and Γi

kk′ , IM ⊗ i
(
ukv

H
k′ − vk′u

H
k

)
/2.

Ignoring the constant summations for the latter two com-
ponents of the sum in (4), the waveform design problem (2)
can be rewritten as

min
y

2P∑
p=1

K∑
k=1

K∑
k′=1

(
yH
((

ApA
H
p

)
� Γr

kk′
)
y
)2

+
(
yH
((

ApA
H
p

)
� Γi

kk′
)
y
)2

(7a)

s.t. |ym(p)| = 1, m = 1, . . . ,M ; p = 1, . . . , P. (7b)

The objective function (7a) takes a quartic form with re-
spect to y, and it can be transformed to the following form

Obj =

2P∑
p=1

K∑
k=1

K∑
k′=1

tr2
{
ỸH
((

ApA
H
p

)
� Γr

kk′
)}

+ tr2
{
ỸH
((

ApA
H
p

)
� Γi

kk′
)}

= vecH
(
Ỹ
)
Φ̃vec

(
Ỹ
)

(8)

where Ỹ , yyH and Φ̃ is defined as Φ̃ , Φ̄� Γ̄ with

Φ̄ ,
2P∑
p=1

vec
(
ApA

H
p

)
vecH

(
ApA

H
p

)
(9)

Γ̄ ,
K∑
k=1

K∑
k′=1

vec
(
Γr
kk′
)
vecH

(
Γr
kk′
)

+ vec
(
Γi
kk′
)
vecH

(
Γi
kk′
)
.

(10)

Then, the problem (7) can be rewritten as

min
Ỹ

vecH
(
Ỹ
)
Φ̃vec

(
Ỹ
)

(11a)

s.t. Ỹ = yyH (11b)
|y(p′)| = 1, p′ = 1, . . . ,MP. (11c)

Before applying majorization to (11a), we present the follow-
ing result to be used later.

Given a set of N -dimension arbitrary complex vectors
{dk}Kk=1 and an N × N arbitrary Hermitian matrix H, the
following generalized inequality

∑K
k=1

(
dkd

H
k

)
� H �

λmax(H)D holds, where D , diag
{∑K

k=1|dk(1)|2, . . . ,
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∑K
k=1|dk(N)|2

}
and λmax(·) denotes the largest eigenvalue

of a matrix. The result that xHQx is majorized by the function
xHGx + 2<

(
xH(Q −G)x0

)
+ xH

0 (G −Q)x0 at x0 when
G � Q is also used in the following. They can be found in
the associate full-size journal paper [24].

It can be shown that λmax

(
Γ̄
)

is a constant value, and
the value of diagonal elements of the first component within
the Hadamard product in Φ̄ is either zero or 2P . Therefore,
we can select G , λΦ̃IM2P 2

(
hereλΦ̃ , 2Pλmax

(
Γ̄
))

to
satisfy the generalized inequality G � Φ̃. Using the above-
mentioned majorization results, the objective function (11a)
can be majorized as

g̃1
(
Ỹ,Ỹ(k)

)
=λΦ̃vecH

(
Ỹ
)
vec
(
Ỹ
)

+ 2<
{
vecH

(
Ỹ
)(

Φ̃− λΦ̃IM2P 2

)
vec
(
Ỹ(k)

)}
+ vecH

(
Ỹ(k)

)(
λΦ̃IM2P 2− Φ̃

)
vec
(
Ỹ(k)

)
(12)

where Ỹ(k) , y(k)
(
y(k)

)H
. Note that vecH

(
Ỹ
)
vec
(
Ỹ
)

=

‖y‖4 = M2P 2. Hence, both summations for the first and
third components in (12) are immaterial for optimization. The
problem (11) can therefore be rewritten as

min
Ỹ

vecH
(
Ỹ
)(

Φ̃− λΦ̃IM2P 2

)
vec
(
Ỹ(k)

)
s.t. Ỹ = yyH

|y(p′)| = 1, p′ = 1, . . . ,MP. (13)

Using the explicit expression of Φ̃, the properties vec
(
Ỹ
)

=(
yT⊗IMP

)H
y and vec

(
ApA

H
p

)
=
(
AT
p ⊗IMP

)H
vec
(
Ap

)
,

and performing some manipulations between Hadamard and
Kronecker products, the objective of (13) can be derived as

vecH
(
Ỹ
)(

Φ̃− λΦ̃IM2P 2

)
vec
(
Ỹ(k)

)
= yH

(
2P∑
p=1

(
ãpã

H
p

)
�∆(k)

p − λΦ̃y(k)(y(k))H

)
y (14)

where ãp , 1M ⊗ ap and ∆(k)
p is an MP × MP matrix

whose (i, j)th element is expressed as[
∆(k)
p

]
i,j

= γ̄T
i,j

((
y(k) � ã∗p

)
⊗
(
(y(k))∗ � ãp

))
(15)

with the M2P 2 × 1 vector γ̄i,j defined as

γ̄i,j ,
[[

Γ̄
]
i,j
,
[
Γ̄
]
i,j+MP

, . . . ,
[
Γ̄
]
i,j+(MP−1)MP

,

. . . ,
[
Γ̄
]
i+(MP−1)MP,j+(MP−1)MP

]T
. (16)

Therefore, the optimization problem (14) can be rewritten as

min
y

yH

(
2P∑
p=1

(
ãpã

H
p

)
�∆(k)

p − λΦ̃y(k)(y(k))H

)
y

s.t. |y(p′)| = 1, p′ = 1, . . . ,MP. (17)

Applying the majorization result (see the last paragraph on the
previous page) to the component

(
(ãpãp)

H) �∆(k)
p in (17),

we obtain that
(
(ãpãp)

H)�∆(k)
p � λmax(∆(k)

p )IMP . Thus
by selecting G ,

∑2P
p=1 λmax(∆(k)

p )IMP , the objective of
(17) can be majorized as

g̃2
(
y,y(k)

)
=

2P∑
p=1

λmax

(
∆(k)
p

)
yHy + 2<

{
yH

(
2P∑
p=1

(ãpã
H
p )�∆(k)

p

− λΦ̃y(k)(y(k))H −
2P∑
p=1

λmax

(
∆(k)
p

)
IMP

)
y(k)

}

+ (y(k))H

(
2P∑
p=1

λmax

(
∆(k)
p

)
IMP + λΦ̃y(k)(y(k))H

−
2P∑
p=1

(ãpã
H
p ) �∆(k)

p

)
y(k) (18)

where the summations for the first and third components of the
sum in (18) do not need to be considered for optimization since
they are constant. Therefore, (17) can be finally simplified into
the following optimization problem

min
y

yHz(k)

s.t. |y(p′)| = 1, p′ = 1, . . . ,MP (19)

where the MP × 1 vector z(k) is defined as

z(k) ,

(
2P∑
p=1

λmax

(
∆(k)
p

)
+MPλΦ̃

)
y(k)

−
2P∑
p=1

((
ãpã

H
p

)
�∆(k)

p

)
y(k). (20)

Due to the constant modulus property of y, (19) is equivalent
to the following optimization problem

min
y

‖y − z(k)‖
s.t. |y(p′)| = 1, p′ = 1, . . . ,MP (21)

which leads to the following closed-form solution

y
(
p′
)

= ejarg
(
z(k)(p′)

)
, p′ = 1, . . . ,MP. (22)

Stacking y into a P×M matrix, we obtain the final waveform
matrix Y. Based on the above derivations, we propose an
original algorithm concluded in Algorithm 1 for solving (2).
Note that the matrix ∆(k)

p can be efficiently obtained in each
iteration, for example, if needed, parallel computation can be
used. We refer interested reader to the literature for accelerated
schemes, for example, the SQUAREM scheme [25] used in
[19], which can speed up the proposed Algorithm 1 as well.

4. SIMULATION RESULTS

We compare the performance of our proposed waveform de-
sign algorithm with that of the WeCAN algorithm (see [12])
and the method in [23] (named as WISLSong) accelerated by
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Algorithm 1 WISL minimization via MaMi

1: k ← 0, y← unimodular sequence with random phases.
2: repeat
3: procedure WISLMAMI

(
y(k)

)
4: Calculate {∆(k)

p }2Pp=1 using (15).
5: Calculate z(k) using (20).

6: y(k+1)(p) = ejarg(z(k)(p′)), p′ = 1, . . . ,MP.

7: k ← k + 1

8: end procedure
9: until convergence

the SQUAREM scheme. We generate unimodular sequences
with random phases as the initialization for each design, and
the same initialized sequence is used for comparison. The
SQUAREM scheme is also used to accelerate the proposed
Algorithm 1. We select the absolute WISL difference between
the current and previous iterations normalized to the initial
WISL as the stopping criterion, and the tolerance is set to be
10−8. All simulations for the tested methods are conducted
using the same hardware and software platforms.

In the first example, we evaluate the convergence prop-
erties (running time versus code length) and the correlation
properties (WISL versus time lags) of waveforms generated
by the three designs tested for a single-waveform scenario,
i.e., M = 1. The code length P is set from 20 to 100 with
stepsize 10, and the controlling ISL weights are γ0 = 1,
γp = 0.1991, p ∈ {−9, . . . ,−1} ∪ {1, . . . , 9}, while the
others are zeros (Γ is positive semi-definite as required by
WeCAN). The results are averaged over 50 trials. It can be
seen that our proposed design significantly outperforms the
WeCAN design in convergence speed with respect to the con-
sumed time and shows as better convergence property (within
1.3 seconds for all tested code length) as the method in [23]
with SQUAREM acceleration (see Fig. 1(a)). Indeed, the We-
CAN algorithm converges more slowly when the set of weights
is not significantly sparse, while our algorithm is not sensitive
to sparsity. Moreover, our proposed algorithm always achieves
much lower WISL when it reaches the stopping tolerance (see
Fig. 1(b)). This is mainly because our proposed design deals
with the true objective of the corresponding WISL minimiza-
tion problem, while the WeCAN design deals with a surrogate
of it. For a fixed code length, the largest gaps between the
achieved WISL by our proposed algorithm and the other two
designs have reached about 40 dB and 55 dB, respectively.

In the second example, we present the correlations ofM =
2 waveforms obtained by the three tested methods with code
length of 32 for a multiple-waveform scenario. The controlling
ISL weights are γ0 = 1, γp = 0.311, p ∈ {−5, . . . ,−1} ∪
{1, . . . , 5}, while the others are zeros. The four sub figures in
Fig. 2 stand for the auto- and cross-correlations of the two sets
of waveforms generated by the methods tested. It can be seen
that the auto-correlations associated with time lags [−5,−1]∪
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Fig. 2. Evaluation of correlation properties.

[1, 5] and cross-correlations associated with time lags [−5, 5]
for the three generated sets of waveforms are controlled, while
waveform correlations associated with other time lags are not
controlled, and therefore, show much higher correlation levels.
Under the condition of the same convergence tolerance, the
correlation levels corresponding to the time lags of interest
by the proposed waveform design are better than those by the
other two methods. The largest gaps between the obtained
correlations by the proposed method and the other two have
reached about 15 dB and 20 dB, respectively, and the WeCAN
method shows the worst weighted correlations.

5. CONCLUSION

We have developed an efficient algorithm for designing sin-
gle or multiple unimodular waveforms with good weighted
correlations. WISL metric has been employed as the criterion
for designing waveforms, and the waveform design has been
formulated as a non-convex quartic problem where Hadamard
product of matrices is involved. This quartic optimization
problem has been converted into a quadratic form and then
solved by means of MaMi technique where majorized objec-
tive functions are properly selected. The proposed algorithm
has shown better weighted correlations of designed waveforms
and faster convergence as compared to its counterparts.
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