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ABSTRACT
We develop polynomial-time heuristic methods to solve
unimodular quadratic programming (UQP) approximately,
which is known to be NP-hard. In the UQP framework, we
maximize a quadratic function of a vector of complex vari-
ables with unit modulus. Several problems in active sensing
and wireless communication applications boil down to UQP.
With this motivation, we present two new heuristic methods
with polynomial complexity to solve the UQP approximately.
The first method is called dominant-eigenvector-matching;
here the solution is picked that matches the complex argu-
ments of the dominant eigenvector of the Hermitian matrix
in the UQP formulation. We also provide a performance
guarantee for this method. The second heuristic method, a
greedy strategy, is shown to provide a performance guarantee
of (1− 1/e) with respect to the optimal objective value given
that the objective function possesses a property called string
submodularity. We also present results from simulations to
demonstrate the performance of these heuristic methods.

Index Terms— Unimodular codes, unimodular quadratic
programming, heuristic methods, radar codes, string submod-
ularity

1. INTRODUCTION
Unimodular quadratic programming (UQP) appears naturally
in radar waveform-design, wireless communication, and ac-
tive sensing applications [1]. To state the UQP problem in
simple terms- a finite sequence of complex variables with unit
modulus to be optimized maximizing a quadratic objective
function. In the context of a radar system that transmits a
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linearly encoded burst of pulses, the authors of [1] showed
that the problems of designing the coefficients (or codes) that
maximize the signal-to-noise ratio (SNR) [2] or minimize the
Cramer-Rao lower bound (CRLB) lead to a UQP (see [1, 2]
for more details). We also know that UQP is NP-hard from
the arguments presented in [1, 3] and the references therein.
In this study, we focus on developing tractable heuristic meth-
ods, to solve the UQP problem approximately that have poly-
nomial complexity with respect to the size of the problem. We
also provide performance bounds for these heuristic methods.

In this study, a bold uppercase letter represents a matrix
and a bold lowercase letter represents a vector, and if not bold
it represents a scalar. Let s represent the unimodular code se-
quence of length N , where each element of this vector lies on
the unit circle Ω centered at the origin in the complex plane,
i.e., Ω = {x ∈ C, |x| = 1}. The UQP problem is stated as
follows:

maximize
s∈ΩN

sHRs, (1)

where R ∈ CN×N is a given Hermitian matrix.
There were several attempts at solving the UQP problem

(or a variant) approximately or exactly in the past; see ref-
erences in [1]. For instance, the authors of [4] studied the
discrete version of the UQP problem, where the unimodular
codes to be optimized are selected from a finite set of points
on the complex unit circle around the origin, as opposed to the
set of all points that lie on this unit circle in our UQP formula-
tion (as shown in (1)). Under the condition that the Hermitian
matrix in this discretized UQP is rank-deficient and the rank
behaves like O(1) with respect to the dimension of the prob-
lem, the authors of [4] proposed a polynomial time algorithm
to obtain the optimal solution. Inspired by these efforts, we
propose two new heuristic methods to solve the UQP prob-
lem (1) approximately, where the computational complexity
grows only polynomially with the size of the problem. In our
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study, we exploit certain properties of Hermitian matrices to
derive performance bounds for these methods.

The rest of the paper is organized as follows. In Section 2,
we present a heuristic method called dominant-eigenvector-
matching. We also present a performance bound for this
method in this section. In Section 3, we present a greedy strat-
egy to solve the UQP problem approximately, which has poly-
nomial complexity with respect to the size of the problem; we
also present a performance bound (when R satisfies certain
conditions) for this method in this section. We also present
application examples where our greedy method is guaranteed
to provide the above-mentioned performance bound. In Sec-
tion 4, we present numerical results to demonstrate the ef-
fectiveness of the above-mentioned heuristic methods. Sec-
tion 5 provides a summary of the results and the concluding
remarks. We omit the proofs in this paper for lack of space,
but we provide key hints to derive these results.

2. DOMINANT EIGENVECTOR-MATCHING
HEURISTIC

Let λ1, . . . , λN be the eigenvalues of R such that λ1 ≤ · · · ≤
λN . We can verify that

λ1N ≤ max
s∈ΩN

sHRs ≤ λNN.

The above upper bound on the optimal solution (λNN ) will
be used in the following discussions.

Definition: In this study, a complex vector a is said to be
matching a complex vector b when arg(a(i)) = arg(b(i)) for
all i, where a(i) and b(i) are the ith elements of the vectors
a and b respectively, and arg(x) represents the argument of a
complex variable x.

Without loss of generality, we can assume that the ma-
trix R is positive semi-definite. If R is not positive semi-
definite, we can turn it into one with diagonal loading tech-
nique without changing the optimal solution to UQP, i.e., we
do the following R = R − λ1IN , where λ1 (< 0 as R is
not semi-definite) is the smallest eigenvalue of R. The ma-
trix R may be diagonalized as R = UΛUH , where Λ is a
diagonal matrix with eigenvalues (λ1, . . . , λN ) of R as the
diagonal elements, and U is a unitary matrix with the corre-
sponding eigenvectors as its columns. Let U = [e1 . . . eN ],
where ei is the eigenvector corresponding to the eigenvalue
λi. The UQP expression can be written as: sHRs =
sHUΛUHs =

∑N
i=1 λi|t(i)|2, where t(i) is the ith element

of UHs, and |.| is the modulus of a complex number. We
know that

∑N
i=1 |t(i)|2 = N for all s ∈ ΩN . Ideally, the

UQP objective function would be maximum for an s such
that |t(N)|2 = N and |t(i)| = 0 for all i < N ; but for any
given R such an s may not exist such that the above condi-
tions hold true. Therefore, inspired by the above observation,
we present the following heuristic method to solve the UQP
problem approximately. We choose an s ∈ ΩN that maxi-
mizes the last term in the above summation |t(N)|. In other

words, we choose an s ∈ ΩN that “matches” (see the defini-
tion presented earlier) eN , which is the dominant eigenvec-
tor of R. But eN may contain zero elements, and when this
happens we set the corresponding entry in the solution vector
to ej0. Clearly, the above heuristic method has polynomial
complexity as most eigenvalue algorithms (to find the domi-
nant eigenvector) have a computational complexity of at most
O(N3) [5], e.g., QR algorithm. We call this heuristic method
dominant-eigenvector-matching. The following proposition
provides a performance guarantee for this method. Hereafter,
this heuristic method is represented byH.
Proposition 2.1 Given a Hermitian and positive semi-
definite matrix R, if VH and Vopt represent the objective func-
tion values from the heuristic method H and the optimal so-
lution respectively for the UQP problem, then

VH
Vopt

≥ λN + (N − 1)λ1

λNN
,

where λ1 and λN are the smallest and the largest eigenvalues
of R of size N .
This result can be verified using the equalities VH = mHRm =∑N

i=1 λi|eH
i m|2,where m is the solution obtained fromH.

3. GREEDY STRATEGY
In this section, we present a heuristic method with polynomial
complexity (with respect to N ), which is a greedy strategy.
We also explore the possibility of our objective function pos-
sessing a property called string submodularity [6, 7], which
allows our greedy method to exhibit a performance guarantee.
First, we describe the greedy method, and then explore the
possibility of our objective function being string-submodular.
Let g represent the solution from this greedy strategy, which
is obtained iteratively as follows:

g(k + 1) = arg max
x∈Ω

[g(1), . . . , g(k), x]HRk

[g(1), . . . , g(k), x],
(2)

where k = 1, . . . , N − 1 where g(k) is the kth element of
g with g(1) = 1, [a, b] in the above expression represents a
column vector with elements a and b, and Rk is the princi-
ple sub-matrix of R obtained by retaining the first k rows and
the first k columns of R. In other words, we optimize the
unimodular sequence element-wise with a partitioned repre-
sentation of the objective function as shown in (2), which sug-
gests that the computational complexity grows as O(N). Let
this heuristic method be represented by G.

The greedy method G is known to exhibit a performance
guarantee of (1−1/e) when the objective function possesses a
property called string-submodularity [6, 7, 8]. To verify if our
objective function has this property, we need to re-formulate
our problem, which requires certain definitions as described
below.

We define a set A∗ that contains all possible unimodular
strings (finite sequences) of length up to N , i.e.,
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A∗ = {(s1, . . . , sk)|si ∈ Ω for
i = 1, . . . , k and k = 1, . . . , N},

where Ω = {x ∈ C, |x| = 1}. Notice that all the unimodular
sequences of length N in the UQP problem are elements in
the set A∗. For any given Hermitian matrix R of size N ,
let f : A∗ → R be a quadratic function defined as f(A) =
AHRkA, where A = (s1, . . . , sk) ∈ A∗ for any 1 ≤ k ≤ N ,
and Rk is the principle sub-matrix of R of size k × k as
defined before. We represent string concatenation by ⊕, i.e.,
if A = (a1, . . . , ak) ∈ A∗ and B = (b1, . . . , br) ∈ A∗ for
any k + r ≤ N , then A ⊕ B = (a1, . . . , ak, b1, . . . , br). A
string B is said to be contained in A, represented by B � A
if there exists a D ∈ A∗ such that A = B ⊕ D. For any
A,B ∈ A∗ such that B � A, a function f : A∗ → R is said
to be string-submodular [6, 7] if both the following conditions
are true:

1. f is forward monotone, i.e., f(B) ≤ f(A).

2. f has the diminishing-returns property, i.e., f(B ⊕
(a))− f(B) ≥ f(A⊕ (a))− f(A) for any a ∈ Ω.

Now, going back to the original UQP problem, the UQP
quadratic function may not be a string-submodular function
for any given Hermitian matrix R. However, without loss
of generality, we will show that we can transform the matrix
R to R (by manipulating the diagonal entries) such that the
resulting quadratic function AHk RkAk for any 1 ≤ k ≤ N
and Ak ∈ A∗ is string-submodular, where Rk is the principle
sub-matrix of R of size k×k as defined before. The following
algorithm shows a method to transform R to such a R that
induces string-submodularity on the UQP problem.

1. First define δ1, . . . , δN as follows:

δk =

k−1∑
i=1

|rki|, (3)

where k = 2, . . . , N , δ1 = 0, and |rki| is the modulus
of the entry in the kth row and the ith column of R.

2. Define a vector with N entries (a1, . . . , aN ), where
ak = 2δk + 4

(∑N−k
i=1 δk+i

)
for k = 1, . . . , N − 1,

and aN = 2δN .

3. Define R as follows:

R = R−Diag(R) + diag((a1, . . . , aN )), (4)

where Diag(R) is a diagonal matrix with diagonal
entries same as that of R in the same order, and
diag((a1, . . . , aN )) is a diagonal matrix with diagonal
entries equal to the array (a1, . . . , aN ) in the same or-
der.

Since we only manipulate the diagonal entries of R to derive
R, the following is true:

arg max
AN∈ΩN

AHNRAN = arg max
AN∈ΩN

AHNRAN .

For any given Hermitian matrix R and the derived R (as
shown above), let F : A∗ → R be defined as

F (Ak) = AHk RkAk, (5)

where Ak ∈ A∗.

Lemma 3.1 For a given R and F : A∗ → R as defined in (5)
with the derived R from R, and for any A,B ∈ A∗ such that
B � A, with B = (b1, . . . , bk) and A = (b1, . . . , bk, . . . , bl)
(k ≤ l ≤ N ), the inequalities

4

l∑
i=k+1

N−i∑
j=1

δi+j ≤ F (A)− F (B) ≤ 4

l∑
i=k+1

(
δi +

N−i∑
j=1

δi+j

)

hold where δi for i = 1, . . . , N are defined in (3).

The above result can be proved from equations (4) and (3).

Lemma 3.2 Given any Hermitian matrix R of size N , the
objective function F : A∗ → R defined in (5) is string sub-
modular.

The above result can be proved using the results from
Lemma 3.1 by showing that F is forward monotone and has
the diminishing returns property. The above lemma shows
that the function F in (5) is string submodular. Therefore, we
know from [6, 7] that the performance of the heuristic method
G is at least (1− 1/e) of the optimal value with respect to the
function F , i.e., if g ∈ A∗ is the solution from the heuristic
method G and if o is the optimal solution that maximizes the
objective function F as in o = arg maxAN∈ΩN AHNRAN ,
then

F (g) ≥
(

1− 1

e

)
F (o). (6)

Although we have a performance guarantee for the greedy
method with respect to F , we are more interested in the per-
formance guarantee from this method with respect to the orig-
inal UQP quadratic function with the given matrix R. We
explore this idea with the following result.

Theorem 3.3 For a given Hermitian matrix R, if Tr(R) ≤
Tr(R) then gHRg ≥

(
1− 1

e

) (
maxs∈ΩN sHRs

)
, where

g is the solution from the greedy method G, and R is derived
from R as described earlier in this section.

The above result can be derived from (4) and (6).

3.1. Application Examples
A square matrix R = [rij ]N×N is said to be M -dominant

if |rii| ≥ M
(∑N

j=1,j 6=i |rij |
)

;∀i. Using the results in [9],
we can verify that if R is Hermitian, non-singular, and M -
dominant, then R−1 is

√
M -dominant.

Proposition 3.4 If a Hermitian matrix R of size N is 2N -
dominant, then Tr(R) ≤ Tr(R), where R is derived from
R according to (4).
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From the above proposition, it is clear that if the Hermi-
tian matrix in the UQP of size N is 2N -dominant, then the
result in Theorem 3.3 holds true, i.e., our greedy method pro-
vides a performance guarantee of (1− 1/e).

In the case of a monostatic radar that transmits a linearly
encoded burst of pulses (as described in [1]), the problem of
optimizing the code elements that maximize the SNR boils
down to UQP, where SNR = |a|2cHRc, R = M−1 �
(ppH)∗ (� represents the Hadamard product), M is an
error covariance matrix (size N ) corresponding to a zero-
mean Gaussian vector, a represents channel propagation and
backscattering effects, c represents the code elements, and p
is the temporal steering vector. See [2] for a detailed study
on this application problem. Using the above arguments, we
can verify that if M is 4N2-dominant, which makes R 2N -
dominant, then our greedy method for this application is guar-
anteed to provide the performance of (1− 1/e) of that of the
optimal.

In the case of a linear array ofN antennas, the problem of
estimating the steering vector in adaptive beam-forming boils
down to UQP as described in [1] [10], where the objective
function is cHR−1c, where R is the sample covariance ma-
trix (sizeN ), and c represents the steering vector; see [10] for
details on this application problem. Again, we can verify that
if the sample covariance matrix is 4N2-dominant, then our
greedy method provides a performance guarantee of (1−1/e)
(as the result in Theorem 3.3 holds true for this case).

4. SIMULATION RESULTS
We test the performance of the heuristic method H numeri-
cally for N = 20, 50, 100. We generate 500 Hermitian and
positive semi-definite matrices randomly for each N , and for
each matrix we evaluate VH (value from the heuristic method
H) and the performance bound derived in Proposition 2.1. To
generate a random Hermitian and positive semi-definite ma-
trix, we use the following algorithm: 1) first we generate a
random Hermitian matrix A using the function rherm, which
is available at [11]; 2) second we replace the eigenvalues of
A with values randomly (uniform distribution) drawn from
the interval [0, 1000]. Figure 1 shows plots of VH

λNN
(normal-

ized objective function value) for each N along with the per-
formance bounds for the heuristic, which also shows Vrand

λNN
,

where Vrand is the objective function value when the solution
is picked randomly from ΩN . The numerical results clearly
show that the heuristic method H outperforms (by a good
margin) random selection, and more importantly the perfor-
mance of H is close to the optimal strategy, which is evi-
dent from the simulation results, where the objective function
value fromH is at least 90% (on average) of the upper bound
on the optimal value for each N . The results clearly show
that the lower bound is much smaller than the value we ob-
tain from the heuristic method for every sample. In our future
study, we will tighten the performance bound for H as the
results clearly show that there is room for improvement. Fig-

ure 2 shows the normalized objective function value from the
greedy method, for each N , along with the bound (1− 1/e),
supporting the result from Theorem 3.3.
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5. CONCLUDING REMARKS
We presented two new heuristic methods to solve the UQP
problem approximately, both with polynomial complexity
with respect to the size of the problem. The first heuris-
tic method was based on the idea of matching the unimod-
ular sequence with the dominant eigenvector of the Hermi-
tian matrix in the UQP formulation. The second heuristic
method is a greedy strategy. We showed that under loose con-
ditions on the Hermitian matrix, the objective function would
possess a property called string submodularity, which then
allowed this greedy method to provide a performance guar-
antee of (1 − 1/e) (a consequence of string-submodularity).
Our numerical simulations demonstrated the performance of
our heuristic methods. In our future study, we will explore
other polynomial-time methods that can provide tighter per-
formance bounds, and also tighten the bounds for the methods
presented in this study. We will also study the effect of eigen-
value structure of the matrix R on our heuristic methods.
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