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ABSTRACT

In this paper, we propose a new matrix completion based MIMO
radar (MIMO-MC) using a random unitary matrix as the waveform
matrix. We show that the corresponding data matrix has a good inco-
herent property, which guarantees accurate reconstruction of the da-
ta matrix from partial entries. The derived performance guarantees
hold for any random unitary waveforms and radar precoder. This
indicates that the proposed MIMO-MC approach can dynamically
adapt its waveform/precoding for the purpose of waveform security
or interference suppression in low SINR conditions, without affect-
ing the performance of data matrix completion. We further inves-
tigate the application of MIMO-MC transmit precoding for clutter
mitigation and spectrum sharing with wireless communications.

Index Terms— Collocated MIMO radar, matrix completion,
transmit precoding, spectrum sharing, clutter

1. INTRODUCTION

MIMO radars transmit different waveforms from their transmit (TX)
antennas, and their receive (RX) antennas forward their measure-
ments to a fusion center for further processing. Based on the for-
warded data, the fusion center populates a matrix, referred to as
the “data matrix”, which is then used by standard array process-
ing schemes for target estimation. For a relatively small number
of targets, the data matrix is low-rank [1–3], thus allowing one to
fully reconstruct it (under certain conditions) based on a small, u-
niformly sampled set of its entries. This observation is the basis of
MIMO-MC radars; the RX antennas forward to the fusion center a
small number of pseudo-randomly sub-Nyquist sampled values of
the target returns, along with their sampling scheme, each RX an-
tenna partially filling a row of the data matrix. Note that the signal
power will be retained after matrix completion. Therefore, there is
no SNR loss due to subsampling. The subsampling at the anten-
nas avoids the need for high rate analog-to-digital converters, and
the reduced amount of samples translates into power and bandwidth
savings in the antenna-fusion center link. Compared to the compres-
sive sensing (CS) based MIMO radars, MIMO-MC radars achieve
data reduction while avoiding the basis mismatch issues inherent in
CS-based approaches [4].

However, it was shown in [3] that the matrix completion perfor-
mance degrades severely when the SINR drops to 10dB. Usually, the
echoes from interfering clutter, e.g., ground, sea and rain, are much
stronger than those returned from targets of interest. With the emer-
gence of radar-communication spectrum sharing [5–8], large inter-
ference from wireless communication systems is also unavoidable.
In addition, the radar waveforms are required to be orthogonal and
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have flat spatial power spectrum in order to have good incoherence
properties [9]. The search for such waveforms in [9] involves high
computational complexity. On the other hand, radar waveforms need
to be updated frequently as security against adversaries. It is of sig-
nificant interest to propose a MIMO-MC radar framework which can
operate under low SINR conditions, and supports waveform agility.

In this paper, we propose a MIMO-MC radar framework using
a random unitary matrix [10] as the waveform matrix. We show that
the data matrix has a good incoherence property, which guarantees
accurate reconstruction of the data matrix from its partial entries.
The derived performance guarantees hold for any waveform matrix
that is random unitary and any radar precoder. This indicates that the
proposed MIMO-MC system can periodically change its waveform-
s, which would be good for security reasons, without affecting the
matrix completion performance. Also, we can design the radar pre-
coder, without affecting the incoherence property of the data matrix,
for the purpose of transmit beamforming or interference suppres-
sion. We further investigate the application of MIMO-MC transmit
precoding for clutter mitigation and spectrum sharing with wireless
communications.

The paper is organized as follows. Section 2 introduces the sig-
nal model of MIMO-MC radars. The proposed MIMO-MC radar
framework is given in Section 3 and its application in clutter miti-
gation and spectrum sharing with wireless communication systems
is given in Section 4. Numerical results and conclusions are provid-
ed respectively in Sections 5 and 6. Notation: CN (µ,Σ) denotes
the circularly symmetric complex Gaussian distribution with mean
µ and covariance matrix Σ. | · | and Tr(·) denote the matrix deter-
minant and trace respectively. The set N+

L is defined as {1, . . . , L}.
δij denotes the Kronecker delta. bxc denotes the largest integer not
larger than x. AT and AH respectively denote the transpose and
Hermitian transpose of A.

2. THE MIMO-MC RADARS

Consider a collocated MIMO radar system with Mt,R TX antennas
and Mr,R RX antennas arranged as uniform linear arrays (ULA)
with inter-element spacing dt and dr , respectively. The radar is pulse
based with pulse repetition interval TPRI and carrier wavelength λc.
TheK far-field targets are with distinct angles {θk}, target reflection
coefficients {βk} and Doppler shifts {νk} and are assumed to fall in
the same range bin. Following the clutter-free model of [2, 3, 9], the
data matrix at the fusion center can be formulated as

YR = VrΣVT
t PS + WR, (1)

where the m-th row of YR ∈ CMr,R×L contains the L samples
forwarded by the m-th antenna; the waveforms are given in S =
[s(1), · · · , s(L)], with s(l) = [s1(l), · · · , sMt,R(l)]

T being the l-
th snapshot across the transmit antennas; the transmit waveform-
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s are assumed to be orthogonal, i.e., it holds that SSH = IMt,R

[3]; WR denotes additive noise; and P ∈ CMt,R×Mt,R denotes
the transmit precoding matrix. Vt , [vt(θ1), . . . ,vt(θK)] and
Vr , [vr(θ1), . . . ,vr(θK)] respectively denote the transmit and
receive steering matrix and vr(θ) ∈ CMr,R is the receive steering
vector defined as

vr(θ) ,
[
e−j2π0ϑ

r

, . . . , e−j2π(Mr,R−1)ϑr
]T
, (2)

where ϑr = dr sin(θ)/λc denotes the spatial frequency w.r.t.
the receive array. vt(θ) ∈ CMt,R is the transmit steering vec-
tor and is respectively defined. Matrix Σ is defined as Σ ,
diag([β1ej2πν1 , . . . , βKej2πνK ]). Note that Doppler shifts might
be neglected in the model since we are considering a fast-time pro-
cessing. D , VrΣVT

t is also called the target response matrix.
After matched filtering at the fusion center, target estimation can be
performed based on YR via standard array processing schemes [11].

When K is smaller than Mr,R and L, the noise-free data matrix
M , DPS is low-rank and can be provably recovered based on
a subset of its entries. This observation gave rise to MIMO-MC
radars [2,3,9], where each RX antenna sub-samples the target returns
and forwards the samples to the fusion center. The partially filled
data matrix at the fusion center can be mathematically expressed as
follows (see [3] Scheme I)

Ω ◦YR = Ω ◦ (M + WR), (3)
where ◦ denotes the Hadamard product; Ω is the sub-sampling
matrix containing 0’s and 1’s. The sub-sampling rate p equals
‖Ω‖0/(LMr,R). When p = 1, the Ω matrix is filled with 1’s, and
the MIMO-MC radar is identical to the traditional MIMO radar.
At the fusion center, the completion of M can be achieved by the
following nuclear norm minimization problem [12]

min
M
‖M‖∗ s.t. ‖Ω ◦M−Ω ◦YR‖F ≤ δ, (4)

where δ > 0 is a parameter determined by the sampled entries of
the noise matrix, i.e., Ω ◦WR. The recovery error of M is bounded
with high probability, given that M is incoherent with parameters
(µ0, µ1), and Ω corresponds to uniformly at random sub-sampling
operation [12]. It is important to note that the stable reconstruction
of the data matrix M with high accuracy implies that almost all the
received target echo power is retained.

The incoherence parameters (µ0, µ1) are given by µ0 ≥
max(µ(U), µ(V )), µ1

√
K

Mr,RL
≥ ‖

∑K
k=1 U·kV

H
·k‖∞, where

U ∈ CMr,R×K and V ∈ CL×K contain the left and right singular
vectors of M; the coherence of subspace V spanned by basis matrix
V is defined as

µ(V ) ,
L

K
max
1≤l≤L

‖Vl·‖2 ∈
[
1,
L

K

]
.

The upper bounds on the incoherence parameters of M are given
in the following theorem [2, 9].

Theorem 1. ( [9, Theorem 2] Coherence of M when P = IMt,R )
Let the minimum spatial frequency separation of the K targets be ξt
and ξr w.r.t. the transmit and receive arrays. On denoting the Fejér
kernel by Fn(x), and for dt = dr = λc/2 and

K ≤ min
{√

Mr,R/FMr,R(ξr),
√
Mt,R/FMt,R(ξt)

}
,

it holds that

µ(U) ≤
√
Mr,R√

Mr,R − (K − 1)
√
FMr,R(ξr)

, µr0.

Further, if every snapshot of the waveforms satisfies that

|ST·lvt(θ)|2 =
Mt,R

L
, ∀l ∈ N+

L , θ ∈
[
−π
2
,
π

2

]
, (5)

then µ(V) is upper bounded by

µ(V ) ≤
√
Mt,R√

Mt,R − (K − 1)
√
FMt,R(ξt)

, µt0.

Consequently, the matrix M is incoherent with parameters µ0 ,
max{µr0, µt0} and µ1 ,

√
Kµ0.

In the following we discuss two points that motivate the contri-
bution of this paper.

1. In [9], the condition in (5) and the orthogonality property was
used to design waveforms with good incoherence properties.
However, radar waveforms need to be updated frequently for
security against adversaries, which subsequently brings us the
issue of computational complexity. The work of [9] involves
numerical optimization on the complex Stiefel manifold [9],
which has high computational complexity.

2. In radar system design, the adaptability of transmit wave-
forms and/or precoder is critical for the suppression of in-
terference, including noise, clutter and jamming. In particu-
lar for MIMO-MC radars, the matrix completion performance
will degrade severely when the SINR drops to as low as 10dB
[3], which in turn emphasizes the importance of waveform
and/or precoder design for MIMO-MC radar noise and inter-
ference mitigation. However, the results in Theorem 1 cannot
be easily extended for a nontrivial transmit precoding matrix.

To address the above two issues, we propose to use a random unitary
matrix [10] as the waveform matrix S. This choice is motivated by
the simulations in [9], which show that the random unitary matrix
performs almost the same as the optimally designed waveform.

3. THE PROPOSED MIMO-MC RADARS USING RANDOM
UNITARY MATRIX

A random unitary matrix [10] can be obtained through performing
the Gram-Schmidt orthogonalization on a random matrix with en-
tries distributed as i.i.d Gaussian. This means that we can generate
waveform candidates easily. The following theorem provides an up-
per bound on the incoherence parameter µ(U) and µ(V ) of M when
the random unitary waveform is used.

Theorem 2. (Bounding µ(U) and µ(V )) Consider the MIMO-MC
radar presented in Section 2 with S being random unitary. For any
transmit precoder P such that the rank of M is K0 ≤ K, and ar-
bitrary transmit array geometry and target angles, the coherence of
subspace V obeys the following:

µ(V ) ≤ K0 + 2
√
3K0 lnL+ 6 lnL

K0
, µ̃t0

with probability 1 − L−2, and the coherence of subspace U obeys
µ(U) ≤ K

K0
µr0, where µr0 is defined in Theorems 1.

Proof. The proof can be found in our extended journal version [13].

Based on Theorem 2, we have the following theorem for the
incoherence parameters of M.

Theorem 3. (Coherence of M with random unitary waveform ma-
trix) Consider the MIMO-MC radar presented in Section 2 with S
being random unitary. For dr = λc/2, arbitrary transmit array

geometry, and K ≤
√
Mr,R/FMr,R(ξr), the matrix M is incoher-

ent with parameters µ0 , max{ K
K0
µr0, µ̃

t
0} and µ1 ,

√
Kµ0 with
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probability 1 − L−2, where µr0 and µ̃t0 are defined in Theorems 1
and 2, respectively. The incoherence property of M holds for any
precoding matrix P such that the rank of M is K0.

Proof. The theorem can be proven by combining the bounds on
µ(U) and µ(V ) in Theorems 1 and 2, respectively.

Remark 1. Some comments are in order. First, ifK0 isO(lnL), the
upper bound µ̃t0 > 1 is a small constant. Therefore, M has a good
incoherence property. A similar bound was provided on the coher-
ence of the subspaces spanned by random orthogonal basis in [14].
Second, unlike the results in Theorem 1, the probabilistic bound on
µ(V ) is independent of the target angles and array geometry. Third,
the above results hold for any random unitary matrix S. The radar
waveform can be changed periodically, which would be good for se-
curity reason, without affecting the matrix completion performance.
Finally, the probabilistic bound on µ(V ) in Theorem 2 is indepen-
dent of P. This means that we can design P, without affecting the in-
coherence property of M, for the purpose of transmit beamforming
and interference suppression. This key observation validates the fea-
sibility of radar precoding for clutter mitigation and spectrum shar-
ing approaches for MIMO-MC radar and communication systems in
the sequel.

4. APPLICATIONS FOR CLUTTER MITIGATION AND
SPECTRUM SHARING

We consider the coexistence scenario in [6], where a MIMO-MC
radar system and a MIMO communication system operate using the
same carrier frequency. Consider the same target scene in a particu-
lar range bin as in Section 2 but with clutter. The signal received by
the radar RX antennas during L symbol durations can be respective-
ly expressed as

Ω ◦YR = Ω ◦
(
DPS︸ ︷︷ ︸

signal

+CPS + Xint︸ ︷︷ ︸
interference

+WR︸︷︷︸
noise

)
,

(6)

where YR, D, P, S, WR, and Ω are defined in Section 2. The
waveform-dependent interference CPS contains interferences from
point scatterers (clutter or interfering objects). Suppose that there
are Kc point clutters with angles {θck}, reflection coefficients {βck}
in the same range bin as the targets. C ,

∑Kc
k=1 β

c
kvr(θ

c
k)v

T
t (θ

c
k)

is the clutter response matrix. Xint denotes the interference from
the wireless communication system which coexists with the MIMO-
MC radar. It was shown in [6–8] that the cooperation on the joint
design transmit schemes significantly boosts the spectrum efficiency
for the co-existence of traditional MIMO radars and wireless com-
munications. In this paper, we also assume that the radar and com-
munication systems cooperate with each other to estimate and share
the interference channels. Specifically, we assume that the covari-
ance matrices of the columns in Xint are identical and are known to
the MIMO-MC radar, saying Rx. In addition, G ∈ CMr,C×Mt,R

denotes the interference channel from between the radar transmit-
ter and the communication receiver. We also assume that G ∈
CMr,C×Mt,R is known to the radar system and is flat fading and
remain the same over L symbol intervals [15–18]. We assume that
WR contains i.i.d random entries distributed as CN (0, σ2

R). For a
more detailed co-existence model and joint designs of the two sys-
tems, we refer the readers to our extended journal version [13].

The MIMO-MC radar only partially samples YR. Therefore,
only the sampled target signal and sampled interference determine
the matrix completion performance. Based on this observation, we
define the effective signal power (ESP) and effective interference

power (EIP) at the radar RX node as follows:

ESP , E
{

Tr
(
Ω ◦M

(
Ω ◦MH

))}
= pLMr,RTr (ΦDt) ,

EIP , E
{

Tr
(
Ω ◦ (CPS + Xint) (Ω ◦ (CPS + Xint))

H
)}

= pLMr,RTr (ΦCt + Rx) ,

where Φ , PPH/L is positive semi-definite; Dt =
∑K
k=1 σ

2
βk

v∗t (θk)v
T
t (θk),

Ct =
∑Kc
k=1 σ

2
βc
k
v∗t (θ

c
k)v

T
t (θ

c
k), σβk and σβc

k
denote the standard

deviation of βk and βck, respectively. The derivation can be found
in [13] and is omitted here for brevity. Incorporating the expres-
sions for effective target signal, interference and additive noise, the
effective radar SINR is given as

ESINR =
Tr (ΦDt)

Tr (ΦCt) + Tr (Rx) + σ2
R

.

Let us consider a scenario in which the radar searches in particu-
lar directions of interest, given by set {θk} for targets with unknown
RCS variances [19,20]. For the unknown {σ2

βk
}, we instead use the

worst possible target RCS variance {σ2
0}, which is the smallest tar-

get RCS variance that could be detected by the radar. In practice, the
prior on {θk} could be obtained in tracking applications, where the
target parameters obtained from previous tracking cycles are provid-
ed to focus the transmit power onto directions of interest. We assume
that {σ2

βc
k
} and {θck} are known. In practice, these clutter parameters

could be estimated when target is absent [21].
Based on Theorem 3, the radar precoder P can be designed with-

out affecting the incoherence property of M. In the following, we
present a design of the radar precoding matrix so that the clutter and
communication interference at the radar RX antennas are minimized
for successful matrix completion, with constraints on the radar trans-
mit beampattern and the interference to the communication system,
i.e.,

(P1) max
Φ�0

ESINR (Φ) , Tr (Φ) ≤ PR, (7a)

s.t. Tr(GΦGH) ≤ η, (7b)

Tr (ΦVk) ≥ ξTr(Φ), ∀k ∈ N+
K , (7c)

where Vk , v∗t (θk)v
T
t (θk). The constraint of (7a) restrict-

s the total radar transmit power to be no larger than PR. The
constraint of (7b) restricts the interference to the communica-
tion system to be at most η, in order to support reliable commu-
nication. The constraints of (7c) restrict that the power of the
radar probing signal at interested directions must be not smaller
than that achieved by the uniform precoding matrix Tr(Φ)

Mt,R
I, i.e.,

vTt (θk)Φv∗t (θk) ≥ ξvTt (θk)
Tr(Φ)
Mt,R

Iv∗t (θk) = ξTr(Φ). ξ ≥ 1 is a
parameter used to control the beampattern at the interested target an-
gles. Problem (P1) is a constrained fractional SDP problem, which
can be transformed into an equivalent SDP problem via Charnes-
Cooper Transformation [21, 22] and be solved efficiently. It can
be shown by the Karush-Kuhn-Tucker (KKT) conditions that any
optimal solution Φ of (P1) has rank at most K. Therefore, the
constraint on the rank of P =

√
LΦ1/2 in Theorem 3 is satisfied.

We omit the proof here for brevity. The readers are referred to [13]
for more details.

5. NUMERICAL RESULTS

In this section, we provide simulation examples to quantify the per-
formance of the proposed transmit precoding design for clutter mit-
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Fig. 1: The radar transmit beampattern and the MUSIC spatial pseudo-spectrum for MIMO-MC radar with different precoding schemes. The true positions of
the targets and clutters are labeled using solid and dashed vertical lines, respectively.

Precoding ESINR MC Relative
schemes (dB) Recovery Errors
Joint-design 31.3 0.038
Uniform -44.3 1.00
NSP based -46.3 1.00

Table 1: The radar ESINR and MC relative recovery errors for MIMO-MC
radar and communication spectrum sharing.

igation and the coexistence of the MIMO-MC radars and commu-
nication systems. The MIMO radar system consists of collocated
Mt,R = 16 TX and Mr,R = 16 RX antennas, respectively form-
ing transmit and receive half-wavelength uniform linear arrays. The
radar waveforms are chosen from the rows of a random orthonormal
matrix [5]. We set the length of the radar waveforms to L = 16. The
wireless communication system consists of collocated Mt,C = 4
TX and Mr,C = 4 RX antennas, respectively forming transmit and
receive half-wavelength uniform linear arrays. The radar and com-
munication transmit power budget are 64000 and 64 (the power is
normalized by the power of the radar waveform), respectively. The
additive white Gaussian noise variance is σ2

R = 0.01. There are
three stationary targets with RCS variance σ2

β0 = 0.5, located in the
far-field with pathloss 10−3, and clutter is generated by four point s-
catterers. All scatterers RCS variances are set to be identical and are
denoted by σ2

β , which is decided by the prescribed clutter to noise
ratio (CNR) 10 log σ2

β/σ
2
R. The interference channel G is modeled

as Rician fading. The power in the direct path is 0.1, and the vari-
ance of Gaussian components contributed by the scattered paths is
10−3. The performance metrics considered in this paper include the
following: 1) The matrix completion relative recovery error, defined
as ‖M−M̂‖F /‖M‖F , where M̂ is the completed data matrix at the
radar fusion center; 2) The radar transmit beampattern, i.e., the trans-
mit power for different azimuth angles vTt (θ)Pv∗t (θ); and 3) The
MUSIC pseudo-spectrum obtained using the completed data matrix
M̂.

We present an example to show the advantages of the proposed
radar precoding scheme as compared to the trivial uniform precod-
ing, i.e., P =

√
LPR/Mt,RI, and null space projection (NSP) pre-

coding, i.e., P =
√
LPR/Mt,RVVH , where V contains the basis

of the null space of G1 [17]. For the proposed joint-design based

scheme in (7), we choose ξ = bξmaxc. The target angles w.r.t. the
array are respectively −10◦, 15◦, and 30◦; the four point scatterers
are at angles −45◦, −30◦, 10◦, and 45◦. The CNR is 30 dB. In this
simulation, the direct path in G1 is generated as

√
0.1vt(φ)v

H
t (φ),

where φ = 15◦, with vt(φ) is defined in (2). In other words, the
communication receiver is taken at the same azimuth angle as the
second target.

The radar transmit beampattern and the spatial pseudo-spectrum
obtained using the MUSIC algorithm are shown in Fig. 1. The cor-
respondingly achieved ESINR and MC relative recovery error are
listed in Table 1. From Fig. 1, we observe that the proposed joint-
design based precoding scheme successfully focuses the transmit
power towards the three targets and nullifies the power towards the
point scatterers. The three targets can be accurately estimated from
the pseudo-spectrum obtained by the proposed scheme. As expect-
ed, the uniform precoding scheme just spreads the transmit power
uniformly in all directions. The NSP precoding scheme results in
a similar beampattern as the uniform precoding scheme except the
deep null at the direction of the communication receiver. This means
that the transmit power towards the second target is severely atten-
uated by the NSP precoding scheme. It is highly possible that the
second target will be missed. In addition, both the uniform and N-
SP precoding schemes have no capability of clutter mitigation. As
shown in Fig. 1 and Table 1, the proposed joint-design based pre-
coding scheme achieves significant improvement in ESINR and MC
relative recovery error.

6. CONCLUSION

In this paper, we have proposed a MIMO-MC radar approach which
uses random unitary matrices as waveforms and supports transmit
precoding. We have shown that the recoverability of the data ma-
trix is always guaranteed for any random unitary waveform and pre-
coding matrix. This indicates that the proposed MIMO-MC radar
supports waveform agility and precoding for interference mitiga-
tion. We have investigated the application of transmit precoding in
the spectrum sharing framework of MIMO-MC radars and wireless
communications. Simulation results have shown that the proposed
MIMO-MC radars could achieve accurate data matrix completion,
high output SINR, and good target angle estimation, under strong
clutter conditions and communication interference.
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