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ABSTRACT
The paper presents the average signal-to-clutter loss (SCRL)
analysis for polarimetric space-time adaptive processing by
exploiting the Kronecker structure of the clutter covariance
matrix (CM). An expression for the average SCRL as a func-
tion of the mean square error of the corresponding CM esti-
mator is derived. Based on that expression, one can determine
how many samples are required in order to achieve a desired
SCRL. The proposed average SCRL analysis methodology
can be extended to more general scenarios, where closed-
form CM estimates are not available. Simulations indicate
that even in the non-asymptotic regime, the proposed method
can provide a good prediction of the average SCRL.

Index Terms— Average SCR Loss, Polarimetric STAP,
Cramér-Rao Bound, Kronecker Structure.

1. INTRODUCTION

It is well-known that polarization diversity [1] is useful in im-
proving the performance of radar detection, estimation, and
tracking [2, 3]. In polarimetric radars [4, 5, 6], the clutter
covariance matrix (CM) can be expressed as the Kronecker
product of the polarization covariance matrix and the space-
time covariance matrix. Exploiting such Kronecker structure
may significantly reduce the number of unknown clutter pa-
rameters to be estimated and achieve considerable estimation
accuracy. Kronecker structured CM estimation is considered
in Gaussian [7] and Compound Gaussian cases [8].

When the clutter CM is replaced by the CM estimate
which is obtained using a set of training samples, the adap-
tive version of the minimum variance distortionless response
space-time adaptive processing (MVDR-STAP) filter is re-
ferred to as the sample matrix inversion STAP (SMI-STAP)
filter [9]. The performance of the SMI-STAP technique
highly depends on the signal-to-clutter ratio loss (SCRL) and
the number of training samples [10]. In the Gaussian case,
for the unstructured CM (positive definite Hermitian), 2N
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training samples are required for 3 dB SCRL [10], where N
is the signal length. For the persymmetric structured CM, the
entries of which are Hermitian symmetric with respect to the
diagonal and cross diagonal, N training samples are required
to achieve 3 dB SCRL [11]. For the Compound Gaussian
clutter, or other CM structures [8], such as the Kronecker and
Toeplitz structure, it is difficult to analyze the statistical prop-
erties of the SCRL. This is mainly due to the implicit form
of the corresponding estimators, which are defined through
fixed point equations [8]. The goal of this paper is to de-
rive an approximate expression of the average SCRL of the
SMI-STAP filter, built with the aforementioned estimators.
In particular, we exploit the Kronecker structure of the clutter
CM for polarimetric STAP in Compound Gaussian clutter.
We analyze the mean square error (MSE) for the Kronecker
maximum likelihood estimator (KMLE), and then derive an
approximate expression of the average SCRL as a function of
the MSE. Finally, we extend this method of SCRL analysis in
more general scenarios. Numerical simulations validate the
effectiveness of the proposed method.

The paper is organized as follows. The problem formu-
lation is given in Section 2. The Kronecker structured CM
estimation is given in Section 3. The proposed method of av-
erage SCRL analysis and the extensions are given in Section 4
and 5. Simulations and conclusion are respectively provided
in Sections 6 and 7.

2. PROBLEM FORMULATION

2.1. Signal Model

Consider the following polarimetric STAP signal model of the
received signal:

y = βt + n ∈ CN×1, (1)

where β is the unknown deterministic amplitude of the target,
t ∈ CN×1 is the polarization-space-time steering vector [6],
given by

t = ap ⊗ as (2)

where ap ∈ CNp×1, as ∈ CNs×1 denote the polarization and
space-time steering vectors respectively. Np takes the values
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1, 2, 3, 4 for different polarization radar schemes [1, 2]. In
(1), the term n denotes clutter returns, obeys the Compound
Gaussian (CG) distribution, and can be expressed in terms of a
real positive texture component, τ , and a speckle component,
c, as n =

√
τc. τ may be unknown, deterministic or random.

In this paper, we assume that τ obeys the inverse Gamma (IG)
distribution. However, the main result corresponding to other
textures can be obtained similarly. The probability density
function (PDF) of the IG distribution with shape parameter v
is given by

pIG(τ ; v) =
vv

Γ(v)τv+1
exp(−v

τ
), τ > 0 (3)

where Γ(·) is the gamma function. c is a complex Gaussian
random vector with zero mean and Kronecker structured co-
variance matrix R, i.e.,

R = Rp ⊗Rs. (4)

Rp ∈ CNp×Np is the polarization covariance matrix, which is
closely related to the terrain of the clutter [13]. Rs ∈ CNs×Ns
is the space-time covariance matrix [9]. Both Rp and Rs are
assumed to be positive Hermitian matrices.

2.2. Problem Formulation

The SCR loss (SCRL) is defined as the ratio of the output
SCR of the SMI-STAP filter using the true covariance matrix,
R, and an estimate R̂ [10, 11]

ρ
∆
=

|tHR̂−1t|2

(tHR−1t)(tHR̂−1RR̂−1t)
, (5)

where (·)H denotes the Hermitian transpose operator.
Exploiting the structural information of the CM can sig-

nificantly improve the CM estimation accuracy and the cor-
responding SCRL. In the Gaussian case with sample covari-
ance matrix (SCM) R̂ = 1

K

∑K
k=1 yky

H
k , where yk ∈ CN×1

is the kth training sample, the average SCRL is given by
E{ρSCM} = K−N+2

K+1 [10]. For the persymmetric struc-
tured CM and the corresponding average SCRL, it holds that
E{ρpers} = 2K−N+2

2K+1 [11].
However, for the Compound Gaussian case and for

other structured covariance matrix, the average SCRL is
not tractable. This motivates us to develop an approximate
expression that may be useful in more general scenarios.

3. KRONECKER STRUCTURED CM ESTIMATION

3.1. Kronecker MLE

The general maximum likelihood estimate (MLE) of the CM,
also known as the fixed-point estimator, in Compound Gaus-
sian clutter with IG texture is given by [12]

R̂MLE =
v +N

K

K∑
k=1

yky
H
k

v + yHk R̂−1
MLEyk

(6)

The Kronecker MLE (KMLE) estimator in Compound
Gaussian clutter with deterministic texture is obtained in [8].
The estimate in [8], i.e., the Kronecker version of Tyler’s
robust estimator, is obtained through majorization minimiza-
tion (MM) algorithm. This method can be readily extended
to random textures.

The KMLE is the Kronecker product of the MLE of the
sub-matrices Rs and Rp. For Compound Gaussian case with
IG texture, the MLE of the sub-matrices Rs and Rp can be
obtained by solving the fixed point equations [8]

R̂s =
v +N

KNp

K∑
k=1

YkR̂
−T
p YH

k

v + yHk (R̂−1
p ⊗ R̂−1

s )yk
(7)

R̂p =
v +N

KNs

K∑
k=1

YT
k R̂−Ts Y∗k

v + yHk (R̂−1
p ⊗ R̂−1

s )yk
(8)

where (·)∗ denotes conjungate operator, (·)T denotes trans-
pose operator, yk =

[
yTk1 yTk2 · · · yTkNp

]T
with yki ∈

CNs×1 being the received data in the ith polarization channel,
i = 1, · · · , Np, and Yk = [yk1, · · · ,ykNp ] ∈ CNs×Np .

Therefore, the KMLE is given by

R̂KMLE = R̂p ⊗ R̂s. (9)

The MM method can iteratively increase the value of the
likelihood function until convergence. Also, the global opti-
mum can be ensured by the geodesic convexity property [16]
of the likelihood function with respect to the covariance ma-
trix R. In general, the MM method will convergent within a
small number of iterations. The KMLE given by (9) will be
the Kronecker version of Tyler’s estimator [8] for v = 0, and
will be the Flip-Flop estimator in Gaussian case for v → ∞
[7].

3.2. Cramér-Rao Bound

It is well known that the MLE is an unbiased, asymptotically
efficient estimator. Thus its mean square error (MSE) will
asymptotically achieve the Cramér-Rao bound (CRB) for
large K. Let us denote the unknown parameter vector of a
Hermitian matrix R as θ = [<{vech{R}}T ,={vech{R}}T ]T

∈ RN2×1, where <{vech{·}} and ={vech{·}} stack the real
and imaginary parts below the main diagonal columnwise
with “vech” including the main diagonal whereas “vech” not
including the diagonal entries [14]. For a Kronecker struc-
tured covariance matrix R = Rp ⊗Rs, let us denote the un-
known parameter vector as θκ

M
= [θTp θTs ]T ∈ R(N2

p+N2
s )×1

with θp and θs stacking respectively N2
p and N2

s real compo-
nents of the Hermitian sub-matrices Rp and Rs.

The Fisher information matrix (FIM) I for θκ is given by

I = HH
κ ΣHκ (10)

where

Hκ =
∂vec{R}
∂θTκ

∈ CN
2×(N2

p+N2
s ), (11)
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and Σ is the FIM for θ in Compound Gaussian clutter. It
holds that [14]

Σ = v1(R−T ⊗R−1) + v2vec(R−1)vec(R−1)
H

(12)

where v1 and v2 is related to the distribution of texture. For
IG texture, it holds that

v1
M
=

v +N

v +N + 1
, v2

M
=

1

v +N + 1
. (13)

Based on the results in [15], the MSE of the CM estimate has
the lower bound

E ∆
= E{vec{R̂−R}vec{R̂−R}H} ≥ Ξ (14)

where A ≥ B means that A − B is positive definite. The
CRB matrix Ξ for θκ is given by [17]

Ξ
∆
= Ξ(R) = HκI†HH

κ

= c1(RT ⊗R)
1
2 P1(RT ⊗R)

1
2 + c2vec(R)vec(R)

H

(15)

where [·]† is the generalized inversion, P1 = H1H
†
1 is the

projection matrix of H1 = (RT ⊗R)−
1
2 Hκ, and

c1 =
1

v1
, c2 =

v2

v1(v1 − v2N)
. (16)

4. AVERAGE SCRL ANALYSIS

In this section, we derive an asymptotic expression of the av-
erage SCRL as a function of the MSE of the estimator.

Theorem 1 Given a covariance matrix estimate R̂ with suf-
ficiently small error, the average SCRL of the SMI-STAP filter
can be approximately expressed as

ρ̄
M
= E{ρ(R̂)} ≈ 1− tr{∆Ē} (17)

where ∆
M
=
(
I− e1e

T
1

)
⊗e1e

T
1 , I is the identity matrix, e1 =

[1, 0, · · · , 0]T ∈ RN×1,

Ē M
= Ē(R) =(
(R−

1
2 U)T ⊗UHR−

1
2

)
E
(

(R−
1
2 U)T ⊗UHR−

1
2

)H
,

(18)

E is defined in (14), and the unitary matrix U satisfies
UHR−

1
2 t = (tHR−1t)

1
2 e1.

Proof: The proof is based on the second order Taylor expan-
sion of ρ at R̂ = R [17]. Then, the first order term equals 0
and the second order term equals −tr{∆Ē}.

According to Theorem 1, the average SCRL is related to
the sum of the corresponding diagonal entries of Ē which can
be regarded as the whitened MSE of the CM estimate. For the
KMLE, it is easy to show that (UHR−

1
2 )R̂KMLE(UHR−

1
2 )H

is the KMLE of the identity matrix according to (7) and (8),
with U = Up ⊗ Us, where the first columns of the uni-

tary matrices Up and Us are (aHp R−1
p ap)

− 1
2 R
− 1

2
p ap and

(aHs R−1
s as)

− 1
2 R
− 1

2
s as respectively, and the other columns

are in the orthogonal subspace of the first column. Thus we
have

Ē(R) = E(I). (19)

Corollary 1 In Compound Gaussian clutter, for a sufficiently
large K, the average SCRL corresponding to the KMLE is
given by

E{ρ(R̂KMLE)} ≈ 1− c1Mκ

K
, (20)

where
Mκ =

Ns − 1

Np
+
Np − 1

Ns
.

Proof: This proof is followed by substituting the CRB ma-
trix in (15) into Theorem 1. Based on (19), we just need
to evaluate the CRB when R = I. It can be verified that
tr{∆vec{I}vec{I}H} = 0 and the nth diagonal entries of
P1 at R = I with n = (i− 1)Ns + (j − 1)NNs + k + (l −
1)N, i, j = 1, · · · , Np, k, l = 1, · · · , Ns, is given by

[P1]nn =


Np+Ns−1

N i = j, k = l
1
Np

i = j, k 6= l
1
Ns

i 6= j, k = l

0 i 6= j, k 6= l

. (21)

According to Corollary 1, when Np = 1, the KMLE is
reduced to the MLE, and the corresponding average SCRL is
E{ρ(R̂MLE)} ≈ 1− c1(N−1)

K . For large Np and Ns, we have
c1 ≈ 1 and Mκ ≈ Ns

Np
+

Np
Ns
≥ 2, where the equality holds if

Np = Ns. This implies that the least amount of the training
samples for 3 dB average SCRL is only K = 2c1Mκ ≈ 4.
Roughly speaking, this is because polarization channels pro-
vide extra training samples (totally KNp) for the estimation
of space-time covariance matrix Rs, while the space-time
channels provide extra samples (totally KNs) for the estima-
tion of polarization covariance matrix Rp.

5. EXTENSIONS

Theorem 1 and Corollary 1 can be suitable for other scenar-
ios as well. In general, the parameters c1 and Mκ in Corol-
lary 1 are related to the texture and the structure, respec-
tively. To be specific, we have c1 = 1 for Gaussian case;
c1 = N+1

N for Tyler’s fixed point estimator (deterministic
texture); c1 = v+N+1

v+N for the IG texture. For other ran-
dom textures, c1 may be obtained by the method in [14]. For
the SCM which obeys the complex Wishart distribution, we
have MSCM = N − 1 , with the corresponding MSE given by
E = 1

KRT ⊗R. For the complex-valued persymmetric struc-
tured covariance matrix, according to the real Wishart distri-
bution [11], we have Mpers = N−1

2 since the covariance ma-
trix can be equivalently transformed to a real SCM. Therefore,
the approximate average SCRLs for SCM and persymmetric
structured CM in the Gaussian case are E{ρSCM} ≈ K−N+1

K
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and E{ρpers} ≈ 2K−N+1
2K respectively. They are very close to

the results given in Sec. 2.2.
It needs to be pointed out that for the Toeplitz structure,

unlike the persymmetric structure and the unstructured case
(SCM), its average SCRL is related to the steering vector t
and the covariance matrix R, i.e., Ē(R) 6= E(I). This is
because the Toeplitz structure implies a specific clutter spec-
tral structure according to the Vandermonde decomposition
R = AΛAH [18], where A is the Fourier matrix, and Λ is a
positive definite diagonal matrix.

MLE is an asymptotically efficient estimator and its MSE
will approximately achieve the CRB for large K. The MLE
of a structured CM can be easily obtained by the MM method
for a general linear model with R =

∑r
k=1 σiΣi [8]. Σi are

the matrix basis related to the corresponding CM structure.
The CRB of this CM model can be obtained by replacing Hκ

by H = [vec{Σ1}, · · · , vec{Σr}] in (15). However, the MM
method may not work well for some non-convex cases, e.g.,
negative unknown parameters σi < 0. In such cases, we may
consider an alternative way to obtain the asymptotically effi-
cient estimators, namely, the generalized least square (GLS)
[19],

min
σ
‖Hσ− r̂MLE‖2W = min

σ
(Hσ− r̂MLE)W−1(Hσ− r̂MLE)

(22)
where σ = [σ1, · · · , σr]T , W = R̂T ⊗ R̂ with the consis-
tent estimator R̂, r̂MLE = vec{R̂MLE} is the vectorization of
the unstructured MLE. A good initial choice of R̂ for GLS
may be given by the LS method, i.e., the solution of (22) with
W = I, which is more asymptotically efficient (approaching
CRB with a smaller K) than R̂ = R̂MLE.

Further, Theorem 1 may be suitable for covariance esti-
mation with some constraints by using the constrained CRB
(CCRB) [20].

6. SIMULATION RESULTS

In this section, we validate the theoretical results of the aver-
age SCRL for polarimetric STAP by exploiting the Kronecker
structure. We consider Np = 2, 3 and Ns = 4, a polarization
matrix with elements [Rp]ij = εi−jp and a space-time covari-
ance matrix with elements [Rs]ij = εi−js . For simplicity, we
assume ε = εp = εs.

The average SCRL as a function of the number of training
samples is compared in Fig. 1 and Fig. 2. It is observed that,
the numerical results are accurately predicted by the theoret-
ical expressions (20), and that the prediction is efficient only
when K = 4 for the KMLE from Fig. 2. The average SCRLs
of the KMLE and the MLE are independent of the correlation
coefficient ε except for the deviation when K < N where the
MLE is singular. With Ns = 4, according to (20), in order
to achieve the same average SCRL, the MLE needs N−1

Mκ
= 4

times more training samples than the KMLE for Np = 2,
and 7.33 times more samples for Np = 3. This implies that
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Fig. 1. The average SCRL as a function of the number of
training samples with Np = 2, Ns = 4, v = 4.
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Fig. 2. The average SCRL as a function of the number of
training samples with Np = 3, Ns = 4, v = 4.

exploiting the a priori knowledge of the Kronecker structure
can save a large amount of training samples, especially with
more polarimetric channels.

7. CONCLUSION

We exploited the a priori knowledge of the Kronecker struc-
ture of CM in the polarimetric STAP problem. We analyzed
how many training samples are required to achieve an SCRL
by exploiting Kronecker structure. This methodology can
also be extended to other scenarios with structured CM. Simu-
lations have shown that significant savings in number of train-
ing samples can be achieved by exploiting structural informa-
tion.
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