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ABSTRACT

The increase in the number of degrees of freedoms (DoF)
that is afforded by multiple-input-multiple-output (MIMO)
phased arrays is accompanied by an increase in hardware and
computational costs. We mitigate this problem in a collocated
MIMO phased array system by employing a selection strat-
egy where a subset of K transmitter-receiver (Tx-Rx) pairs is
chosen from the availableN pairs. We formulate the selection
task as an optimization problem using the spatial correlation
coefficient (SCC). Minimizing the SCC leads to an increase in
the orthogonality of the signal and interference subspaces. We
formulate and solve both the joint Tx-Rx selection problem
and factored selection where the Tx and Rx are decoupled and
treated separately. We show that both approaches can achieve
excellent trade-off between performance and cost. While the
factored problem compromises performance with respect to
the joint Tx-Rx selection, it allows for better transmit power
efficiency, thus increasing the received signal-to-noise ratio.

Index Terms— MIMO Radar, Adaptive array beamform-
ing, antenna selection, convex optimization

1. INTRODUCTION

Multiple-input-multiple-output (MIMO) phased array radar,
[1], continues to be the subject of intense research. A MIMO
phased array transmits a set of noncoherent orthogonal wave-
forms that is extracted at the receiver by a set of matched filter
banks. The diversity in the waveforms provides additional de-
grees of freedom (DoFs) with respect to standard phased ar-
rays and leads to superior performance in terms of detection,
spatial resolution, and parameter identifiability [2, 3].

Spacetime-adaptive processing (STAP) for phased arrays
enables the design of optimum space-time adaptive filters to
mitigate the effects of clutter and jamming signals [4,5]. Full
dimension STAP, however, is plagued by high computational
cost and slow convergence due to the severe requirements
on training data for the filter design. A number of dimen-
sionality reduction approaches have been proposed over the
years to tackle these issues. Low-rank and reduced-dimension
techniques rely on the low-rank property of the interference
signals to reduce the dimensionality of the covariance ma-
trix [6, 7]. The beamformer is then designed by a reduced

dimensional filter. Single snapshot and hybrid approaches,
e.g. [8], improve the convergence by alleviating or eliminat-
ing altogether the need for training data. They do not how-
ever address the computational complexity problem. Alterna-
tively, dimensionality reduction can be achieved by approach-
ing the problem from the compressive sensing and sparsity-
awareness perspective [9].

Antenna selection strategies, on the other hand, have been
proposed to simultaneously reduce the hardware and compu-
tational cost while preserving the performance [10, 11]. As-
suming the number of front-ends (or channels) is limited, a
switching scheme was proposed to select a subset of K of the
available N antennas. This is done to maximize the separa-
bility between a desired signal subspace and an interference
subspace. These approaches have been extended to antenna-
pulse selection in STAP [12].

STAP methods are also applicable in MIMO phased ar-
ray by extending the datacube to include the extra dimension
generated by the orthogonal waveforms [1]. Although, this
gives an increase in the rank of the jammer and clutter sub-
space, the application of STAP is more challenging and com-
putationally expensive [13], and dimensionality reduction be-
comes more critical. To this end, a sparsity aware algorithm
has been proposed for target localization and DOA estima-
tion in collocated MIMO phased array systems in [14]. The
authors propose a random array architecture in which a low
number of transmit/receive elements are randomly distributed
over a large aperture. However, the antenna placement is then
fixed and a potential DoF is not exploited. Sparsity has also
been used in distributed MIMO phased array in [15], but the
method still involves all measurements.

In this paper, we develop an approach to reduce both the
measurements and processing requirements in a collocated
MIMO phased array system using a transmitter-receiver (Tx-
Rx) pair selection strategy. For a MIMO system with M
transmitters and N receivers, the Tx-Rx pair selection in-
volves selecting a subset of K out of the available MN pairs
to maximize the separation between a desired and parasitic
directions of arrival (DOAs). We formulate this problem as
a non-convex optimization and obtain solutions using relax-
ation methods. However carrying out the selection at the
matched filter end requires the use of all transmit and receive
channels. Therefore, we present a factored selection strategy
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where the Tx and Rx selection problems are decoupled and
solved separately. Although this reduces the solution space
with respect to the joint selection problem, it does provide
a more efficient scheme for the radar power utilization and
allows for the SNR to be enhanced. Finally, we demonstrate
through simulations that both selection strategies significantly
reduce computation and hardware costs while maintaining a
performance that is comparable to that of the full array.

The remainder of the paper is organized as follows. In
section 2 we formulate the Tx-Rx selection problem for
MIMO arrays. In section 3 we discuss the performance of the
joint and factored selection approaches in terms of cost and
power utilization. Section 4 presents some simulation exam-
ples to illustrate the performance of the proposed strategies.
Finally, some conclusions are given in section 5.

2. RECONFIGURABLE MIMO PHASED ARRAY

The ability of phased arrays to simultaneously steer a beam
toward a signal of interest and many nulls in specific (inter-
fering) directions is determined by the spatial correlation co-
efficient (SCC) [16]. The SCC has a direct relationship to the
output signal to interference plus noise ratio (SINR), which
is dependent on the generalized inner product of the steer-
ing vectors of the signal and interference [17]. The gener-
alized inner product, and hence the SCC, can be interpreted
as the cosine of the angle between the signal and interfer-
ence subspaces. An SCC that is 0 implies that the signal and
interference are mutually orthogonal. Thus, minimizing the
SCC leads to an enhanced ability of the array processing al-
gorithms to carrying interference nulling.

In MIMO systems the selection is a multidimensional
optimization problem on the matched filters (that is Tx-Rx
pairs). Below, we formulate both the joint Tx-Rx selection
and factored Tx and Rx version and discuss their properties.

2.1. Joint Tx-Rx selection

Consider a MIMO phased array with M transmitters and
N receivers. The system employs M mutually orthogonal
waveforms at the transmitter and a corresponding set of M
matched filters at each receiver element. The contributions of
all transmitter and receiver pairs give a corresponding virtual
array and an associated increase in the number of DoFs. The
locations of the virtual elements are given by the convolution
of the locations of the transmitters and receivers [18].

Let the location of the transmitters PT and receivers PR

be defined as

PT =


xT,1 yT,1
xT,2 yT,2

...
...

xT,M yT,M

 , PR =


xR,1 yR,1
xR,2 yR,2

...
...

xR,N yR,N

 . (1)

Fig. 1. Collocated MIMO phased array example.

Fig. 2. MIMO virtual array

Then the positions of the MN virtual array elements are

PV = PR ⊗ 1M + 1N ⊗ PT, (2)

where 1N is a length-N vector with elements equal to 1, and
⊗ is the Kronecker product. An example of a collocated
MIMO phased array is shown in Fig. 1. The array includes
3 transmitters and 9 receivers positioned on a uniform 3×3
grid. The virtual array for this configuration is depicted in
Fig.2. Let (φs, θs) and (φj , θj) be the DOAs (azimuth and
elevation) of the desired signal and interference respectively.
The steering vectors of the signal and interference are

vs = ej
2π
λ PVus , vj = ej

2π
λ PVuj , (3)

where

ui = [sin θi cosφi sin θi sinφi]
T . (4)

The spatial correlation coefficient, which gives the degree
of orthogonality between the signal and noise subspaces is
defined as

αjs =
vHj vs
‖vj‖ ‖vs‖

=
vHj vs√

vHj vj
√

vHs vs
=

vHj vs
MN

. (5)

We now introduce a selection vector c that specifies whether a
particular element is selected or not. Thus, the i-th element, ci
takes on a value of 1 if the corresponding element is selected,
and 0 otherwise. Assuming K out of MN matched filters are
active, SCC squared can be written as

|αjs|2 =
cTWrc
K2

, (6)
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where Wr is expressed as

Wr = real(vjsvHjs), (7)

and

vjs = vs � vHj . (8)

This can be interpreted as the selection of a subset of ele-
ments from the virtual array, or equivalently a subset of Tx-Rx
pairs or matched filters within the MIMO array. Recall that
the goal here is to minimize the SCC and enhance the separa-
tion between the signal and interference subspaces. Thus, the
joint Tx-Rx selection problem can be expressed as

min
c
|αjs|2

s.t. ci(ci − 1) = 0 i = 1...MN, (9)

and cT c = K.

This binary selection problem is a non-convex optimization
and is known to be NP-hard. Therefore we use two relax-
ation methods, specifically the Lagrange dual (LD) and direct
semidefinite programming (SDP), to obtain lower bounds on
the SCC [10].

2.2. Factored Tx and Rx selection

The joint selection problem puts constraint only on the num-
ber of output matched filters. Since any subset of filters is a
possible solution, the entire set of transmitters must necessar-
ily transmit their waveforms. When the matched filters cor-
responding to a particular transmit element are not used, this
leads to wasted transmit power. This problem can be avoided
by factorizing the selection problem into transmit and receive
sub-problems. Suppose that we select KT out of M transmit
elements andKR out of the availableN receive elements. The
overall selection vector is then c = cT ⊗ cR, where, cR and cR

are the selection vectors for transmitters and receivers, recep-
tively. The factored SCC becomes

|αjs|2 =
(cT ⊗ cR)

TWr(cT ⊗ cR)

(KT ×KR)2
. (10)

Thus, the factored Tx/Rx selection problem can be expressed
as

min
cT,cR
|αjs|2

s.t. cT,i(cT,i − 1) = 0 i = 1...M, (11)
cR,i(cR,i − 1) = 0 i = 1...N,

cTT cT = KT,

cTR cR = KR.

Now we factorize Wr as

Wr = Wr,T ⊗Wr,R, (12)

Using the properties of the KronecKer product, the numerator
of Eq.10 is rewritten as

(cT ⊗ cR)
TWr(cT ⊗ cR) = (cT ⊗ cR)

T (Wr,T ⊗Wr,R)(cT ⊗ cR)

= (cTT Wr,T ⊗ cTR Wr,R)(cT ⊗ cR)

= (cTT Wr,TcT)(c
T
R Wr,RcR). (13)

Thus the factored SCC in Eq.10 can be expressed as a mul-
tiplication of two SCCs with respect to transmitters and re-
ceivers,

|αjs|2 =
(cTT Wr,TcT)

K2
T

× (cTR Wr,RcR)

K2
R

= |αjs,T|2 × |αjs,R|2 , (14)

and the selection can be solved as two separate sub-problems.

3. DISCUSSION

The factored Tx-Rx selection operates on a subspace of
solutions that is included in the joint Tx-Rx optimization.
Therefore, the factored problem reduces the search space
and hence computational cost of obtaining the solution, but
may not achieve the global solution of the joint problem.
However, selecting a subset of transmitters allows the avail-
able total transmit power to be allocated only to the chosen
elements. This is in contrast to the joint selection problem
where all transmitters must be operational to guarantee that
all matched filters are available for selection. Thus, assum-
ing a total available transmit power Pe = PT , the transmit
power per element in the factored case is Pe = PT /KT as
opposed to PT /M for the joint selection case. To illustrate
the effect this has on the output SINR, we consider a scenario
where a total transmit power PT is available. Now the power
received by the m-th matched filter in the n-th receiver is
Pn,m = αPe, where α represents the channel gain (including
target cross-section.) Assuming that the interference is much
stronger than the noise, the output SINR can be expressed
as [10]:

SINRout = αK
Pe
σ2

(
1− |αjs|2

)
, (15)

where σ2 is the variance of the noise. This expression shows
the interplay between the input signal to noise ratio and the
SCC for the joint and factored approaches. Whereas the SCC
in the factored case may not be the global optimum that can be
obtained in the joint optimization, the input power is higher
and consequently the output SINR is increased. Nonetheless,
turning transmitters off leads to better power efficiency. It
is important to note that the allowable transmit power per ele-
ment may be capped (due to the available transmitter dynamic
range) which may limit the gain achievable by the factored
approach.
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4. SIMULATION

Consider a MIMO phased array system comprising a 5-
antenna uniform linear collocated array. The azimuth angle
of the signal of interest is assumed to be φs = 0.3π, while that
of the interference azimuth, φj , is varying from 0 to π

2 . We
aim to select k = 6 Tx-Rx pairs for the joint problem and 2
Tx and 3 Rx elements for the factored version. The minimum
SCC value is calculated first by exhaustive search for both
cases and the lower bounds are computed using CVX [19].
The solution space for joint problem contains

(
25
6

)
= 177100,

however for the factored problem this number is reduced to(
5
2

)
×
(
5
3

)
= 100. The results for both cases are depicted

in Fig. 3. Firstly note that the lower bounds are tight as the
curves coincide. Furthermore, the SCC obtained by joint se-
lection is generally lower than that of the factored approach.
This confirms that the joint selection achieves the global so-
lution over all possible Tx-Rx. The factored selection, on the
other hand, is suboptimal as it operates on a subspace of the
possible solutions.

We now set the interference elevation φj = 0.1π and
solve the selection problem for an increasing subset of anten-
nas ranging from 1 to 25. For the factored case, the number of
elements is calculated by factorizing 1 to 25 excepts the prime
numbers. Where more than one factorization is possible, the
one with the minimum number of Tx elements is used. As can
be seen in Fig.4, the joint selection outperforms the factored
version for different number of selected elements.

Finally, we compare the performance of the joint and fac-
tored approaches in terms of the output SINR. The results in
Fig. 5 show that the factored approach is able to achieve a
higher SINRout. This is due to the increase in transmitted
power per element, Pe, which counteracts the degradation
in the achievable SCC value. The effect of the increase in
Pe is made clear by showing the curve corresponding to a
Pe = PT /M which is the value used in the joint selection.
Also notice that the output SINR given by the joint selection
remains comparable with that of the full array even when a
significantly smaller number of pairs are used. For instance
selecting 15 out of 25 Tx-Rx pairs would substantially reduce
the computational cost of the STAP processing but would re-
sult in less than 0.5 dB loss with respect to the full array
(13.56 dB). In the factored case, however, the increase in Pe
can have a much more pronounced effect than the SCC and
therefore an improvement on the full array can be obtained.

5. CONCLUSION

In this paper, we proposed Tx-Rx pair selection for MIMO
phased array radar in order to achieve significant hardware
and computational cost savings. We formulated the joint Tx-
Rx selection problem as an non-convex optimization and used
relaxation methods to study the solution. Furthermore, we
presented a factored version that reduces the size of the so-
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lution space, yet is able to achieve comparable or even better
output signal to interference and noise ratio than the joint so-
lution. We presented simulation results that show the effec-
tiveness of the proposed techniques in reducing the problem
dimensionality while maintaining a performance that is com-
parable to the full array.
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