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ABSTRACT

Pulse Doppler multiple input multiple output (MIMO) radar allows to
simultaneously detect targets’ range, azimuth and velocity. Achieving
high resolution requires a large number of transmit and receive anten-
nas, as well as high sampling rates leading to a torrent of samples.
Overcoming the rate bottleneck, sub-Nyquist sampling methods have
been proposed that break the link between single antenna radar signal
bandwidth and range resolution. In this work, we present a sub-Nyquist
MIMO radar (SUMMeR) system that extends these methods to a
multiple antenna setting. We apply the Xampling framework both in
time and space, thus reducing both the number of deployed antennas
and samples per receiver, without degrading time and spatial resolution,
as illustrated in the simulations.

Index Terms— MIMO radar, sub-Nyquist sampling, compressed
sensing

I. INTRODUCTION

Multiple input multiple output (MIMO) radar is an emerging
technology [1] that has significant potential for advancing state-of-the-
art modern radar. MIMO radar combines multiple antenna elements at
the transmitter and receiver where each transmitter radiates a different
waveform. In this paper, we focus on the collocated MIMO architecture
[2], in which the elements are close to each other.

Collocated MIMO radar systems exploit waveform diversity, based
on mutual orthogonality of the transmitted signals [3]. This generates
a virtual array induced by the phase differences between transmit and
receive antennas. Such systems thus achieve higher resolution than
their phased-array counterpart with the same number of elements. This
increased performance comes at the cost of high complexity in terms of
transmitters and receivers design as well as heavy computational load.
Several works have thus considered exploiting the sparse nature of the
targets scene to reduce the number of antenna elements and samples
per receiver while preserving range, azimuth and Doppler resolution.

The partial problem of azimuth recovery of targets all in the same
range-Doppler bin is investigated in [4]. There, spatial compression is
performed, where the number of antennas is reduced while preserving
the azimuth resolution. Beamforming is applied on the time domain
samples obtained from the thinned array at the Nyquist rate and the
azimuths are recovered using compressed sensing (CS) techniques. In
[5], [6], [7], a time compression approach is adopted where the Nyquist
samples are compressed in each antenna before being forwarded to the
central unit. While [5] exploits sparsity and uses CS recovery methods,
[6], [7] apply matrix completion techniques to recover the missing
samples, prior to azimuth-Doppler [6] or range-azimuth-Doppler [7]
reconstruction. However, the authors do not address sampling and pro-
cessing rate reduction since the compression is performed in the digital
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domain, after sampling, and the missing samples are reconstructed
before recovering the targets parameters.

In all the above works, recovery is performed in the time domain on
acquired or recovered Nyquist rate samples for each antenna. To reduce
the sampling rate while preserving the range resolution, the authors in
[8] consider frequency domain recovery. The work of [8] demonstrates
low-rate range-Doppler recovery for a single antenna, including sub-
Nyquist acquisition digital processing. Low-rate data acquisition is
based on the ideas of Xampling [9], which obtains Fourier coefficients
of the received signal from sub-Nyquist samples and recovers the
targets range-Doppler map from these. A practical analog front-end
implementing such a sampling scheme is presented in [10].

The work of [8] exploits the Xampling framework to break the
link between radar signal bandwidth and sampling rate, which defines
the time or range resolution. Here, we present the sub-Nyquist MIMO
radar (SUMMeR) system, that extends this concept in the context of
MIMO radar to break the link between the aperture and the number of
antennas, which defines the spatial or azimuth resolution. We consider
azimuth-range-Doppler recovery and apply the concept of Xampling
both in space (antennas deployment) and in time (sampling scheme) in
order to simultaneously reduce the required number of antennas and
samples per receiver, without degrading time and spatial resolution. To
this end, we express the “Xamples”, or compressed samples, both in
time and space, in terms of the targets unknown parameters, namely
range, azimuth and Doppler, and show how these can be recovered
efficiently from the sub-Nyquist samples. We also derive necessary
conditions on the minimal number of samples and antennas for perfect
recovery of the azimuth-range-Doppler map in noiseless settings and
show that these depend only on the maximal number of targets to be
detected. Simulations demonstrate that SUMMeR preserves time an
spatial resolution with respect to classic Nyquist MIMO.

This paper is organized as follows. In Section II, we describe
the MIMO signal model and SUMMeR system. Section III introduces
our sub-Nyquist sampling scheme and azimuth-range-Doppler recovery
algorithm. Numerical experiments are presented in Section IV.

II. MIMO RADAR MODEL

II-A. SUMMeR architecture

The traditional approach to collocated MIMO adopts a virtual ULA
structure [11], where R receivers, spaced by λ

2
and T transmitters,

spaced by Rλ
2

(or vice versa), form two ULAs. Here, λ is the
signal wavelength. Coherent processing of the resulting TR channels
generates a virtual array equivalent to a phased array with TR λ

2
-

spaced receivers and normalized aperture Z = TR
2

. This standard array
structure and the corresponding receiver virtual array are illustrated in
Fig. 1(a)-(b) for R = 3 and T = 5. The blue circles represent the
receivers and the red squares are the transmitters.

Each transmitting antenna sends P pulses, such that the mth
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transmitted signal is given by

sm(t) =

P−1∑
p=0

hm (t− pτ)ej2πfct, 0 ≤ t ≤ Pτ, (1)

where hm (t) , 0 ≤ m ≤ T − 1 are narrowband and orthogonal pulses
with bandwidth Bh, modulated with carrier frequency fc. The coherent
processing interval (CPI) is equal to Pτ , where τ denotes the pulse
repetition interval (PRI). For convenience, we assume that fcτ is an
integer, so that the delay e−j2πfcτp is canceled in the modulation [12].
The pulse time support is denoted by Tp.

MIMO radar architectures impose several requirements on the
transmitted waveform family. Besides traditional demands from radar
waveforms such as low sidelobes, MIMO transmit antennas rely on
orthogonal waveforms. In addition, to avoid cross talk between the T
signals and form TR channels, the orthogonality condition should be
invariant to time shifts, that is

∫∞
−∞ si (t) s∗j (t− τ0) dt = δ (i− j) ,

for i, j ∈ [0,M − 1] and for all τ0. This property implies that
the orthogonal signals cannot overlap in frequency [13], leading to
frequency division multiple access (FDMA). Alternatively, time invari-
ant orthogonality can be approximately achieved using code division
multiple access (CDMA). In this work, we employ FMDA waveforms
and for simplicity, {hm(t)}T−1

m=0 are frequency-shifted versions of a
low-pass pulse h0(t) whose Fourier transform H0 (ω) has bandwidth
Bh, such that

Hm (ω) = H0 (ω − 2πfm) . (2)

Consider L non-fluctuating point-targets, according to the
Swerling-0 model [14]. Each target is identified by its parameters:
radar cross section (RCS) α̃l, distance between the target and the array
origin or range Rl, velocity vl and azimuth angle relative to the array
θl. Our goal is to recover the targets’ delay τl = 2Rl

c
, azimuth sinus

ϑl = sin(θl) and Doppler shift fDl = 2vl
c
fc from the received signals.

The targets are assumed to be stationary and the transmitted waveforms
are narrowband. These traditional MIMO assumptions ensure constant
αl, τl, θl and fDl over the channels and during the CPI (see [15] for
more details).

The SUMMeR system implements compression in both space
and time, reducing the number of antennas as well as the number
of samples acquired by each receiver, while preserving range and
azimuth resolution. We begin by describing the spatial compression.
Time compression is introduced in Section III.

Consider a collocated MIMO radar system with M < T transmit
antennas and Q < R receive antennas, whose locations are chosen
uniformly at random within the aperture of the virtual array described
above, that is {ξm}M−1

m=0 ∼ U [0, Z] and {ζq}Q−1
q=0 ∼ U [0, Z],

respectively. Note that, in principle, the antenna locations can be chosen
on the ULAs’ grid. However, this configuration is less robust to range-
azimuth ambiguity and leads to coupling between these parameters in
the presence of noise, as shown in [15]. In Section III, we present lower
bounds on the number of antennas M and Q. The spatially thinned
array structure is illustrated in Fig. 1(c), for Q = 2 and M = 3.

Since we adopt a FDMA framework, spatial compression, which
in particular reduces the number of transmit antennas, removes the
corresponding transmitting frequency bands as well. The transmitted
signals are illustrated in Fig. 2 in the frequency domain. Figure 2(a) and
(b) show a standard FDMA transmission for T = 5 and the resulting
signal after spatial compression for M = 3.

II-B. Received Signal

The transmitted pulses are reflected by the targets and collected
at the receive antennas. Under the assumptions described above, the

Fig. 1. Illustration of MIMO arrays: (a) standard array, (b) virtual array,
(c) thinned array.

Fig. 2. FDMA transmissions: (a) standard, (b) spatial compression.

received signal x̃q(t) at the qth antenna is then a sum of time-delayed,
scaled replica of the transmitted signals:

x̃q (t) =

T−1∑
m=0

L∑
l=1

α̃lsm

(
c+ vl

c− vl

(
t−

Rl,mq

c+ vl

))
, (3)

where Rl,mq = 2Rl − (Rlm + Rlq), with Rlm = λξmϑl and
Rlq = λζqϑl accounting for the array geometry, as illustrated in Fig. 3.
The received signal at the qth antenna is further simplified and after

Fig. 3. MIMO array configuration.

demodulation to baseband is given by

xq (t) =

P−1∑
p=0

M−1∑
m=0

L∑
l=1

αlhm (t− pτ − τl) ej2πβmqϑlej2πf
D
l pτ , (4)

where βmq = (ζq + ξm)
(
fm

λ
c

+ 1
)
. It will be convenient to express

xq(t) as a sum of single frames

xq(t) =

P−1∑
p=0

xpq(t), (5)

where

xpq(t) =

M−1∑
m=0

L∑
l=1

αlh(t− τl − pτ)ej2πβmqϑlej2πf
D
l pτ . (6)
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Our goal is to estimate the targets range, azimuth and velocity, i.e. to
estimate τl, ϑl and fDl from low rate samples of xq(t), and a small
number M and Q of antennas.

III. SUB-NYQUIST RANGE-AZIMUTH-DOPPLER
RECOVERY

In this section, we describe how the range-azimuth-Doppler map
can be recovered from Xamples in time and space and formulate nec-
essary conditions on the number of channels, samples per receiver and
pulses per transmitter to allow for perfect recovery in noiseless settings.
We next present our range-azimuth-Doppler recovery algorithm based
on the concept of Doppler focusing introduced in [8].

The received signal xpq (t) at the qth antenna is limited to t ∈
[pτ, (p+ 1)τ ] and thus can be represented by its Fourier series

xpq(t) =
∑
k∈Z

cpq [k] e−j2πkt/τ , t ∈ [pτ, (p+ 1)τ ] , (7)

where, for −NT
2
≤ k ≤ NT

2
− 1, with N = τBh,

cpq [k] =
1

τ

M−1∑
m=0

L∑
l=1

αle
j2πβmqϑle−j

2π
τ
kτlej2πf

D
l pτHm

(
2π

τ
k

)
.

(8)
We observe that the unknown parameters τl, ϑl and fDl are embodied
in these coefficients.

To obtain the Fourier coefficients cpq [k] in (8) from low-rate samples
of the received signal xpq(t), we use the sub-Nyquist sampling scheme
presented in [8], [10]. For each received transmission, Xampling allows
one to obtain an arbitrary set κ, comprised of K = |κ| frequency
components from K point-wise samples of xpq(t) after appropriate
analog preprocessing. Therefore, MK Fourier coefficients are acquired
at each receiver for each pulse from MK samples, with K coefficients
per frequency band or transmission.

After separation to channels by matched filtering, the
normalized and aligned Fourier coefficients ypm,q [k] =

τ
|H0( 2π

τ
k)|2

c̃pq,m [k + fmτ ], with c̃pq,m [k] = cpq [k]H∗m
(

2π
τ
k
)
, are

given by

ypm,q [k] =

L∑
l=1

αle
j2πβmqϑle−j

2π
τ
kτle−j2πfmτlej2πf

D
l pτ , (9)

for −N
2
≤ k ≤ N

2
− 1.

III-A. Range-Azimuth-Doppler Recovery Conditions

As in traditional MIMO, assume that the time delays, azimuths and
Doppler frequencies are aligned to a grid. In particular, τl = τ

TN
sl,

ϑl = −1 + 2
TR

rl and fDl = − 1
2τ

+ 1
Pτ
ul, where sl, rl and ul are

integers satisfying 0 ≤ sl ≤ TN − 1, 0 ≤ rl ≤ TR− 1 and 0 ≤ ul ≤
P − 1, respectively. Let Zm be the KQ× P matrix with qth column
given by the vertical concatenation of ypm,q [k], k ∈ κ, for 0 ≤ q ≤
Q− 1. We can then write Zm as

Zm =
(
B̄m ⊗Am

)
XDFH . (10)

Here, Am denotes the K × TN matrix whose (k, n)th element is

e−j
2π
TN

κkne
−j2π fm

Bh

n
T with κk the kth element in κ, Bm is the

Q × TR matrix with (q, p)th element e−j2πβmq(−1+ 2
TR

p) and and
F denotes the P × P Fourier matrix. The Kronecker product is
denoted by ⊗ and (·)H is the Hermitian operator. The matrix XD

is a T 2NR × P sparse matrix that contains the values αl at the L
indices (rlTN + sl, ul).

Our goal is now to recover XD from the measurement matrices
Zm, 0 ≤ m ≤ M − 1. The time, spatial and frequency resolution
stipulated by XD are 1

TBh
, 2
TR

and 1
Pτ

respectively. Theorem 1

presents necessary conditions on the minimal number of channels MQ,
samples per receiver MK and pulses per transmitter P for perfect
recovery of XD from (10) under the grid assumption. The proof can
be found in [15].

Theorem 1. The minimal number of channels required for perfect
recovery of XD with L targets in noiseless settings is MQ ≥ 2L with
a minimal number of MK ≥ 2L samples per receiver and P ≥ 2L
pulses per transmitter.

III-B. Range-Azimuth-Doppler Recovery

To recover jointly the range, azimuth and Doppler frequency of
the targets, we apply the concept of Doppler focusing from [8] to our
setting. Once the Fourier coefficients (9) are acquired and processed,
we perform Doppler focusing for a specific frequency ν, that is

Φνm,q [k] =

P−1∑
p=0

ypm,q [k]e−j2πνpτ (11)

=

L∑
l=1

αle
j2πβmqϑle−j

2π
τ

(k+fmτ)τl

P−1∑
p=0

ej2π(fDl −ν)pτ ,

for −N
2
≤ k ≤ −N

2
− 1. Following the same argument as in [8], it

holds that
P−1∑
p=0

ej2π(fDl −ν)pτ ∼=
{

P |fDl − ν| <
1

2Pτ
,

0 otherwise.
(12)

Then, for each focused frequency ν, (11) reduces to a 2D problem.

Algorithm 1 extends orthogonal matching pursuit (OMP) to solve
(10) using Doppler focusing. Note that step 1 can be performed using
fast Fourier transform (FFT). In the algorithm description, vec(Z) con-

catenates the columns of Zm, et(l) =
[
(e0
t (l))

T · · · (eM−1
t (l))T

]T
where emt (l) = vec((B̄m ⊗Am)Λt(l,2)TN+Λt(l,1)

(
(F̄m)T

Λt(l,3)

)T
)

with Λt(l, i) the (l, i)th element in the index set Λt at the tth iteration,
and Et = [et(1) . . . et(t)]. Once Xp are recovered, the delays,
azimuths and Dopplers are estimated as

τ̂l =
τΛL(l, 1)

TN
, ϑ̂l = −1+

2ΛL(l, 2)

TR
, f̂Dl = −

1

2τ
+

∆L(l, 3)

Pτ
. (13)

III-C. Multi-Carrier SUMMeR

We now explain how the frequency bands left vacant can be
exploited to increase the system’s performance without expanding the
total bandwidth of Btot = TBh. Denote by γ = T/M the compression
ratio of the number of transmitters. In this configuration, referred to
as multi-carrier SUMMeR, each transmit antenna sends γ pulses in
each PRI. Each pulse belongs to a different frequency band and are
therefore mutually orthogonal, such that the total number of user bands
is MγBh = TBh. The ith pulse of the pth PRI is transmitted at time
i τ
γ

+ pτ , for 0 ≤ i < γ and 0 ≤ p ≤ P − 1. The samples are
then acquired and processed as described above. Besides increasing
the detection performance as we show in simulations, this method
multiplies the Doppler dynamic range by a factor of γ with the same
Doppler resolution since the CPI, equal to Pτ , is unchanged. Preserving
the CPI allows to maintain the targets’ stationarity.

IV. SIMULATIONS

Throughout the experiments, the standard MIMO system is based
on a virtual array, as depicted in Fig. 1(a), which would be generated
by T = 20 transmit antennas and R = 20 receive antennas, yielding
an aperture λZ = 6m. The SUMMeR system is composed of M < T
transmitters and Q < R receivers, with locations generated uniformly
at random over the virtual array, as shown in Fig. 1(b). We use
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Algorithm 1 OMP for simultaneous sparse 3D recovery with focusing

Input: Observation matrices Z(m,p), measurement matrices A(m,p),
B(m,p), for all 0 ≤ m ≤M − 1 and 0 ≤ p ≤ P − 1

Output: Index set Λ containing the locations of the non zero indices
of X, estimate for sparse matrix X̂

1: Perform Doppler focusing for 0 ≤ i ≤ TN and 0 ≤ j ≤ TR:

Φ
(m,ν)
i,j =

P−1∑
p=0

Y
(m,p)
i,j ej2πνpτ .

2: Initialization: residual R
(m,p)
0 = Φ(m,p), index set Λ0 = ∅, t = 1

3: Project residual onto measurement matrices for 0 ≤ p ≤ P − 1:

Ψp = AHRpB,

where A = [A0T A1T · · · A(M−1)T ]T ,

B = [B0T B1T · · · B(M−1)T ]T , and Rp =

diag
(

[R
(0,p)
t−1 · · · R

(M−1,p)
t−1 ]

)
is block diagonal

4: Find the three indices λt = [λt(1)λt(2)λt(3)] such that

[λt(1) λt(2) λt(3)] = arg maxi,j,ν
∣∣Φν

i,j

∣∣
5: Augment index set Λt = Λt

⋃
{λt}

6: Find the new signal estimate

α̂ = [α̂1 . . . α̂t]
T = (ETt Et)

−1ETt vec(Z)

7: Compute new residual

R
(m,p)
t = Ym −

t∑
l=1

αle
j2π

(
− 1

2
+

Λt(l,3)
P

)
p
amΛt(l,1)

(
b̄mΛt(l,2)

)T
8: If t < L, increment t and return to step 2, otherwise stop
9: Estimated support set Λ̂ = ΛL

10: Estimated matrix X̂D: (ΛL(l, 2)TN + ΛL(l, 1),ΛL(l, 3))-th com-
ponent is given by α̂l while rest of the elements are zero

FDMA waveforms hm(t) such that fm = (im − T
2

)Bh, where
im are integers chosen uniformly at random in [0, T ], and with the
following parameters: PRI τ = 100µsec, bandwidth Bh = 5MHz and
carrier fc = 10GHz. We consider targets from the Swerling-0 model
with identical amplitudes and random phases. The received signals
are corrupted with uncorrelated additive Gaussian noise with power
spectral density N0. We consider a hit-or-miss criterion as performance
metric. A “hit” is defined as a range-azimuth-Doppler estimate which
is identical to the true target position up to one Nyquist bin (grid point)
defined as 1/TBh, 2/TR and 1/Pτ for the range azimuth and Doppler,
respectively.

We first consider L = 6 targets including couples of targets with
close ranges, azimuths and velocities, up to one grid point. We use
M = 10 transmit antennas and Q = 10 receive antennas and employ
K = 250 samples per channel instead of N = Bhτ = 500, which
corresponds to only 12.5% of the total number of Nyquist rate samples
from the original array. The SNR is set to −10dB. Figure 4 shows the
sparse target scene on a range-azimuth map, where each real target
is displayed with its estimated location. The range and azimuth are
converted to 2-dimensional x and y locations.

Next, we investigate the performance of our azimuth-range-Doppler
recovery scheme with respect to SNR for different number of samples
K per channel. We use the same array as described above, with
spatial compression of 25%, where each transmitter sends P = 10
pulses,. We consider L = 10 targets whose locations are generated
uniformly at random. Figure 5 presents the range-azimuth-Doppler
recovery performance with respect to SNR. The configuration with
K = 500 corresponds to samples obtained at the Nyquist rate and
that with K = 125 is composed of only 6.25% of the total number of

Fig. 4. Range-azimuth-Doppler recovery L = 6 targets and
SNR=−10dB.

Fig. 5. Range-azimuth-Doppler recovery performance with time com-
pression.

Nyquist rate samples from the original array. We observe a shift of 3dB
between the consecutive graphs, since the compression between them
yield a decrease of half the system power. Similar results are observed
for spatial compression.

Last, we illustrate the increased detection performance achieved
by the multi-carrier SUMMeR method. We consider the same system
parameters as above with L = 5 targets. In the classic and SUMMeR
system, P = 10 pulses are transmitted by each transmit antenna.
In multi-carrier SUMMeR, we have γ = 2, leading to 2P = 20
pulses per transmitter. In Fig. 6, we observe that the multi-carrier
approach with spatial compression achieves the same performance as
the original SUMMeR and the classic processing with no compression.
The reduction of the number of receivers decreases the performance by
3dB, which are compensated by the extra transmitted pulses.

Fig. 6. Multi-carrier SUMMeR with spatial compression.
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