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ABSTRACT
A two-stage method for off-grid coherent direction-of-arrival
(DOA) estimation using atomic norm minimization based on
the covariance matrix is proposed in this paper. In the first
stage, by vectorizing the covariance matrix, a new off-grid
model matched as a linear combination of two dimensional
harmonic is presented, where the proposed denoising covari-
ance matrix-based atomic norm minimization (DCMANM) is
applied for the vectorized covariance matrix denoising. Then
the simplified dual polynomial method (SDPM) is used for
DOA estimation. Unlike most of existing methods, the pro-
posed method requires knowing neither the number of signals
nor the statistics of noise. Numerical simulations demonstrate
the outperformance of the proposed method in both the an-
gle resolution and DOA estimation precision compared to the
state-of-the-art approaches.

Index Terms— DOA estimation, covariance matrix,
atomic norm, dual polynomial

1. INTRODUCTION

Direction-of-arrival (DOA) estimation as an important sub-
ject in array signal processing has attracted much interest,
and many classical methods sprung up over last few decades
[1–4]. MUSIC [2], as a representative of the classical meth-
ods, has been applied widely. However, it suffers from cer-
tain limitations such as it requires the prior information about
the number of signals and the uncorrelated property among
signals. Recently, inspired by compressed sensing (CS) and
sparse representation theorem, [5] proposes L1-SVD method
to estimate DOAs. Compared with MUSIC, L1-SVD is more
robust to the numbers of signals and correlated signals. We
often refer to L1-SVD as a on-grid method since it formu-
lates signal sparse representation on the predefined discrete
dictionary or equally assumes the true DOAs exactly lie on
the predefined fixed grid. However, in reality the assumption
rarely holds since the DOAs are continuous-valued and the
unavoidable basis mismatch may result in the performance
degradation. More recently, the method named atomic norm
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soft thresholding for multiple measurement vectors (AST for
MMV) using atomic norm technology for line spectrum esti-
mation is proposed in [6,7] to alleviate the effect of basis mis-
match. In contrast to L1-SVD, AST for MMV is referred to
as an off-grid method. It’s worth noting that, in both L1-SVD
and AST for MMV, the prior information about the statistic-
s of noise is required to determine a desired regularization
parameter. [8] proposes the covariance matrix reconstruction
approach (CMRA), another off-grid method, for DOA esti-
mation, which is based on the covariance matrix of observed
signals and can be carried out without knowing the number
of signals and the statistics of noise, while it can only handle
uncorrelated signals.

In this paper, firstly, by vectorization operator on the
covariance matrix of observed signals, an off-grid model
matched as a linear combination of two dimensional harmon-
ic is presented, where an off-grid method named denoising
covariance matrix-based atomic norm minimization (DC-
MANM) is proposed for the vectorized covariance matrix
denoising. Secondly, simplified dual polynomial method (S-
DPM) is proposed for DOA estimation, of which both peak
searching and rooting formulations are presented. It’s the first
time the atomic norm for two dimensional harmonic is uti-
lized into uniform linear array (ULA) DOA estimation. More-
over, The proposed two-stage method (DCMANM+SDPM)
not only can be carried out without the prior information of
the number of signals and the statistics of noise, but is robust
to correlated or even coherent signals.

Throughout this paper, matrices and vectors are denoted
by bold letters and scalars are denoted by unbolded letters.
For a matrix X , vec(X) denotes a vector whose elements are
taken column-wise from X . We use (·)T , (·)∗ and (·)H to de-
note the transpose, the conjugate and the conjugate transpose
operation, respectively.

2. DCMANM WITH ULA

Consider K far-field narrowband signals sk(t), k =1, . . . ,K,
impinging on a ULA of M omnidirectional sensors which are
uniformly spaced with a spacing of d from distinct directions
θk ∈ [−90◦, 90◦), k = 1, . . . ,K. The observation model can
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be represented as

y(t) = A(θ)s(t) + n(t), t = 1, 2, . . . , L (1)

where t indexes the snapshot and L denotes the snapshot num-
ber, y(t) = [y1(t), . . . , yM (t)]T , s(t) = [s1(t), . . . , sK(t)]T

and n(t) = [n1(t), . . . , nM (t)]T denote the observed snap-
shot, the vector of source signals and the vector of noise at
the snapshot t, respectively. A(θ) = [a(θ1), . . . ,a(θK)] is
the array mainfold matrix and a(θk) is the steering vector of
the k-th source which satisfies

a(θk) = [1, ej2π
d
λ sin(θk), . . . , ej2π

d
λ (M−1)sin(θk)]T , (2)

where θ = [θ1, . . . , θK ] is the vector of directions, and in this
paper, the spaced distance d is assumed to be equal to half of
the wavelength λ, i.e., d = λ/2.

Moreover, the source signals s(t) can be correlated and
n(t) are additive Gaussian white noise with same distribution
which satisfy

E[s(t1)s
H(t2)] = P δt1,t2 ,

E[n(t1)n
H(t2)] = diag(σ)δt1,t2 ,

E[s(t1)n
H(t2)] = E[n(t1)s

H(t2)] = 0,

(3)

where P = {Pi,j} ∈ CK×K is the source correlation matrix,
σ = [σ1, . . . , σM ]T ∈ RM

+ denotes the noise variance param-
eter, and δt1,t2 denotes the Kronecker delta function which
equals 1 if t1 = t2 or 0 otherwise. It’s worthy noting that in
amount of covariance matrix-based algorithms such as MU-
SIC and CMRA, the source correlation matrix P is assumed
as a diagonal matrix, while it may not be hold in practice. In
this paper, we assume P is a non-diagonal matrix to exhibit
the robustness of the proposed method to correlated signals in
theory. Under the above assumptions, the covariance matrix
R of observed signals has the following decomposition

R = E[y(t)yH(t)] = A(θ)PAH(θ) + diag(σ). (4)

Let fk = 1
2 sin(θk) ∈ [−1

2 ,
1
2 ) and Ω = {f1, . . . , fK}

denote the frequency that corresponds to the direction θk and
the set of corresponding frequencies, respectively. Then (2)
can be written equivalently as

a(fk) = [1, ej2πfk , . . . , ej2π(M−1)fk ]T , (5)

and similarly, A(f) = [a(f1), . . . ,a(fK)], where f =
[f1, . . . , fK ] is the vector of corresponding frequencies. It’s
easy to find that A(f) satisfies

AH(f) = AT (−f). (6)

Thereby, the covariance matrix R can be rewritten as

R =A(f)PAT (−f) + diag(σ)

=AK
[K]diag(vec(P

T ))(AK(−f))T

+ diag(σ),

(7)

where AK
[K]=[AK

1 , . . . ,AK
K ] with AK

i =[a(fi), . . . ,a(fi)]

∈ CM×K and AK(−f)=[A(−f), . . . ,A(−f)] ∈ CM×K2

.
Denote by r⋆ = vec(RT ) ∈ CM2

the vectorized covariance
matrix R, then one has

r⋆ =(AK
[K] ⊗AK(−f))vec(diag(vec(P T )))

+ vec(diagT (σ))

=

K∑
j=1

K∑
i=1

Pi,ja(fi)⊗ a(−fj) + vec(diag(σ))

=
K∑
j=1

K∑
i=1

Pi,jc(fi, fj) + vec(diag(σ)),

(8)

where c(fi, fj) := a(fi)⊗ a(−fj), fi, fj ∈ Ω. It’s straight-
forward to find that the first item of (8) is linear combina-
tion of elements from the atomic set defined in [9,10] and the
atomic norm minimization (ANM) approach can be applied
to obtain the decomposition of the first item of (8) with de-
noising the second item from r⋆.
Remark 1 We refer to (8) as a complete formulation since
herein we consider overall Pi,j ̸= 0. In fact, Pi,j(i ̸= j)
will be equal to zero when the two source signals are uncor-
related, resulting in the sum items in (8) less than K2. We
denote the set as the collection of all feasible [fi, fj ] by Λ,
i.e., Λ = {[fi, fj ]|fi, fj ∈ Ω, Pi,j ̸= 0}, where |Λ| = U de-
notes the cardinal number of Λ.
Remark 2 Note that the feasible region of atomic set defined
in [9] as [0, 1) × [0, 1) is different from the feasible region
of c(fi, fj) which is [−1

2 ,
1
2 )× [−1

2 ,
1
2 ). The equivalence be-

tween them can be easily obtained since a(f) is periodic with
period one.

According to the atomic norm minimization theory [9,10],
and mitigating the effect of noise by eliminating the M en-
tries of r⋆ which contain the noisy element σi, we have the
following atomic norm minimization problem

min
r

∥r∥A s.t. ΓTr = ΓTr
⋆, (9)

where ΓT = blkdiag{E1, . . . ,EM} is the noise elimination
operator with Em=[e1, . . . , em−1, em+1, . . . , eM ]T and em
being the standard orthogonal basis of 1 at the m-th position.
blkdiag{·} denotes the block diagonal operator.

In practical applications, R is estimated from the L snap-
shots as follows

R̂ =
1

L

L∑
l=1

y(tl)y
H(tl), (10)

which contains estimation error since finite snapshots effec-
t. Denote △r = ΓT (vec(R̂

T ) − r⋆) as the partial estima-
tion error, then following from [11] and [12], △r satisfies the
asymptotic normal distribution as

△r ∼ AsN(0,W ∗), (11)
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where W = 1
LΓT (R

T ⊗R)(ΓT )
T and can be approximate-

ly estimated as Ŵ = 1
LΓT (R̂

T ⊗ R̂)(ΓT )
T . It’s straightfor-

ward to deduce that

∥(Ŵ ∗)−
1
2△r∥22 ∼ Asχ2(M2 −M), (12)

where Asχ2(M2 − M) denotes the asymptotic Chi-square
distribution with M2 −M degrees of freedom. A alternative
constraint is introduced as

∥(Ŵ ∗)−
1
2△r∥22 ≤ η (13)

with η making (13) hold with a high probability 1− p, where
p is small value. Imposing the constraint (13) instead of the
constraint in (9), we have the following denoising covari-
ance matrix-based atomic norm minimization (DCMANM)
method for DOA estimation

r̂ = argmin
r

∥r∥A s.t. ∥(Ŵ ∗)−
1
2△r∥22 ≤ η. (14)

As [9] claims, ∥r∥A has an approximate semidefinite pro-
gram (SDP) characterization and hence (14) can be solved
efficiently using off-the-shelf SDP solver. In this paper, to
enhance sparsity and resolution, the reweighted trace mini-
mization (RWTM) proposed in [10] is used to solve (14). We
refer interested readers for respective papers for details.

3. SDPM FOR DOA ESTIMATION

When the optimal solution r̂ of (14) is given, it’s of equal
importance to exploit its decomposition where the DOAs can
be simultaneously retrieved . One computationally effective
method is dual polynomial method (DPM) which is proposed
in [13]. It can be simply concluded as two stage. In the first
stage, the dual optimal solution q⋆ of the prime problem

min
r

∥r∥A s.t. r = r̂ (15)

is obtained by solving the precise SDP presented in [13] us-
ing SDP solvers. Then in the second stage, the U unknown
frequency couples (fi, fj) ∈ Λ can be obtained by located
where | ⟨q⋆, c(fi, fj)⟩ |= 1. Readers are referred to [13] for
more details. However, to retrieve the DOAs, we actually
only need to acquire the set of corresponding frequencies Ω.
In other words, only all the distinct frequencies contained in
Λ is needed to be determined, i.e., the K frequency couples
(fi, fi) ∈ Λ. The other frequency couples belong to Λ are
correspond to the correlated source couples and can be omit-
ted. As a simplification of DPM, the expected K frequen-
cy couples can be determined by searching | ⟨q⋆, c(fi, fj)⟩ |
whether equal to one with fi = fj and we conclude it as the
following corollary:
Corollary 1: Define a simplified dual trigonometric polyno-
mial Q̂(f) as Q̂(f) := ⟨q⋆, c(f, f)⟩, then the correspond-
ing frequencies can be localized by identifying the locations

where Q̂(f) = sign(Pi,i) = 1, i.e.,

Q̂(fi) = 1, ∀fi ∈ Ω,

|Q̂(f)| < 1, ∀f ̸∈ Ω,
(16)

where sign(·) represents the complex sign.
Following from Corollary 1, we introduce the peak

searching function of the proposed simplified dual poly-
nomial method (SDPM) as

PSDPM(f) =
1

1− |Q̂(f)|
, f ∈ [−1

2
,
1

2
). (17)

By locating the peak, we can obtain the corresponding fre-
quencies fi, i = 1, . . . ,K.

Next, a closed-form solution of SDPM designated as
Root-SDPM is given. Firstly, consider the simplified du-
al trigonometric polynomial Q̂(f), define Q = {Qi,j} ∈
CM×M as a matrix satisfying q⋆ = vec(QT ), one has

Q̂(f) = ⟨q⋆, c(f, f)⟩ = ⟨q⋆,a(f)⊗ a(−f)⟩
=

∑
(m1,m2)∈M

q(m1−1)M+m2
ej2π[f,−f ][m1−1,m2−1]T

=
∑

(m1,m2)∈M

Qm1,m2e
j2πf(m1−m2)

=

M−1∑
t=−M+1

(∑
diag(Q, t)

)
ej2πft

=
M−1∑

t=−M+1

ute
j2πft, (18)

where M = {1, . . . ,M} × {1, . . . ,M} denotes the union of
the indices, and ut =

∑
diag(Q, t) is the coefficient corre-

sponding to the degree t. diag(Q, t) is a vector with the t-th
diagonal of Q being its elements. Then, define a trigonomet-
ric polynomial of degree 4M − 4 as

p4M−4(e
j2πf ) = ej2π(2M−2)f (1− |Q̂(f)|2)

= ej2π(2M−2)f (1−
2M−2∑

j=−2M+2

µje
j2πfj),

(19)

where µj =
∑

t utu
∗
t−j . Note that the corresponding fre-

quencies are the nonzero roots of (19), the phase angles of the
corresponding frequencies as ẑi can be obtained by locating
the double roots of p4M−4(z), z ∈ C on the unit circle. Final-
ly, with the knowledge of ẑi, fi = 1

2π arg(ẑi). What’s more,
as a byproduct, the number of sources can be obtained as the
number of double roots of p4M−4(z) on the unit circle.

With the obtained corresponding frequencies, the DOAs
can be retrieved by

θi = arcsin(2fi), fi ∈ Ω. (20)
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Fig. 1. DOA estimation for correlated sources. the first and
the third source are coherent. (a) DPM in [13], (b) Our pro-
posed method (SDPM)

4. NUMERICAL SIMULATIONS

In this section, we present numerical examples to evaluation
the performance of the proposed two-stage method (DC-
MANM+SDPM) for DOA estimation. In simulations, we
consider a 10-element ULA and the number of collected s-
napshots L is set to 300. The parameter η in DCMANM is
calculated using the Matlab function chi2inv(1−p,M2−M),
where p is set to 0.1. The proposed DCMANM is implement-
ed using CVX [14].

Firstly, suppose three signals with power [5,5,1] impinge
onto the ULA from [−20◦, 10◦, 60◦]. Among the signals, the
first and the third are coherent and uncorrelated with the sec-
ond. The SNR is set to 10dB. As shown in Fig.1(a), by treat-
ing negative DOAs as another dimension of angle, DPM pro-
posed in [13] not only detects the three true DOAs, but ex-
cavates the correlation between the first and the third signal-
s. The proposed peak searching method is shown in Fig.1(b)
which can be regarded as a section of Fig.1(a) along the di-
rection of DOA = −(−DOA).

We also evaluate the DOA estimation resolution of our
proposed method with comparison to MUSIC, L1-SVD and
AST for MMV. For computationally effectiveness, AST for
MMV is implemented via Alternating Direction Method of
Multipliers (ADMM) [6]. We consider three equal-power sig-
nals with DOAs [15◦, 20◦, 60◦] impinge onto the ULA. The
first signal and the third signal are coherent, but uncorrelated
with the second signal. The SNR is set to -3dB. As shown
in Fig.2, our proposed method has a higher resolution com-
pared to MUSIC and AST for MMV in low SNR. We omit
the result of L1-SVD to enhance the figure visibility where
L1-SVD can likewise distinguish these three signals.

Furthermore, we use root mean square error (RMSE) to
evaluate DOA estimation precision of our proposed method
with the above three algorithm. Assume two coherent signals
with equal power impinge onto the ULA from [−10+ϵ, 10+ϵ]
where ϵ has a uniform distribution in [−1◦, 1◦]. Inhere, Root-
SDPM is employed for DOA estimation. The RMSE of DOA
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Fig. 2. Spacial Spectra for correlated sources. The first and
the third source are coherent.
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Fig. 3. RMSE comparison of MUSIC, L1-SVD, AST for M-
MV for two coherent sources with M=10, L=300.

estimation against SNR shown in Fig.3 is obtained through a
total of 50 trials. From Fig.3, we can see that our proposed
method has the best estimation precision than the rest three
methods when SNR>−5dB, although our method loses its
super-resolution ability when SNR is lower since it detects
only one DOA in some runs. Moreover, L1-SVD is compara-
ble with or better than AST for MMV since the iterative grid
refinement (IGR) is employed on L1-SVD for accuracy im-
provement [5] and the ADMM employed converges slowly to
an extremely accurate solution [15].

5. CONCLUSIONS

In this paper, a new covariance matrix-based two-staged
method for off-grid DOA estimation via atomic norm min-
imization is proposed. Firstly, in DCMANM, we denoise
the vectorized covariance matrix. Then in SDPM, both peak
searching method and close-formed root polynomial method
are proposed for DOA retrieval. The proposed method is ro-
bust to the correlated sources and can be carried out without
knowing the source number and the statistics of noise. Nu-
merical simulations demonstrate the outperformance of the
proposed method compared to the existing methods.
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