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ABSTRACT

In this paper we present FRIDA—an algorithm for estimating di-
rections of arrival of multiple wideband sound sources. FRIDA
combines multi-band information coherently and achieves state-
of-the-art resolution at extremely low signal-to-noise ratios. It
works for arbitrary array layouts, but unlike the various steered
response power and subspace methods, it does not require a grid
search. FRIDA leverages recent advances in sampling signals
with a finite rate of innovation. It is based on the insight that for
any array layout, the entries of the spatial covariance matrix can
be linearly transformed into a uniformly sampled sum of sinu-
soids.

Index Terms— Direction of arrival, finite rate of innovation,
subspace method, search-free, wideband sources

1. INTRODUCTION

A wishlist for a direction of arrival (DOA) estimator may look
something like this: it should be high-resolution, work at low
signal-to-noise ratios (SNRs), resolve many possibly closely
spaced sources, work with few arbitrarily laid out microphones,
and do so efficiently, without grid searches.

It is uncommon to have all of these items checked at once.
For example, the steered response power (SRP) methods [1] can
be made robust, do not require a specific array geometry, and are
immune to coherence in signals. Nevertheless, because they are
based on beamforming, they cannot resolve close sources [2].

Close sources can be resolved by the high-resolution DOA
finders. Their main representatives are subspace methods such
as MUSIC [3], Prony-type methods such as root-MUSIC [4], and
methods that attempt to compute the maximum likelihood (ML)
estimator such as IQML [5].

Subspace methods exploit the fact that for uncorrelated sig-
nal and noise, the eigenspace of the spatial covariance matrix
corresponding to largest eigenvalues is spanned by the source
steering vectors [3]. These methods are fundamentally narrow-
band since the signal subspaces vary with frequency; they can
be made wideband either by incoherently combining narrowband
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estimates or, better, by combining them coherently through trans-
forming the array manifold at each frequency to a manifold at a
reference frequency (CSSM [6], WAVES [7]). These methods
require a search over space unless the array is a uniform linear
array (ULA) [8]. Coherent methods also require special “focus-
ing matrices”, essentially initial guesses of the source locations.
WAVES can do without focusing but at the cost of performance.
In between coherent and incoherent methods is the TOPS algo-
rithm [9], which performs well at mid-SNRs, but still requires a
search and performs worse than coherent methods at low SNRs.

We propose a new finite rate of innovation (FRI) sampling-
based algorithm for DOA finding—FRIDA. Among the men-
tioned algorithms, FRIDA is most reminiscent of IQML [5],
especially for narrowband signals and ULAs. Unlike IQML,
FRIDA works for wideband signal and arbitrary sensor geome-
tries by naturally accommodating array interpolation in a way
reminiscent of manifold separation [10, 11]. Moreover, it uses
multi-band information coherently. Still, it requires no grid
search and no sensitive preprocessing akin to focusing matri-
ces, and it achieves very high resolution at very low SNRs,
outperforming previous state-of-the-art.

FRIDA can work with fewer microphones than sources as it
uses cross-correlations instead of raw microphone streams. The
tradeoff is that it is not able to handle completely correlated sig-
nals. A straightforward modification of the algorithm which op-
erates on raw signals rather than cross-correlations does not have
this issue, but it requires more microphones.

The main ingredient of FRIDA is an FRI sampling algorithm
[12]. FRI sampling has recently been extended to non-uniform
grids along with a robust reconstruction algorithm [13]. The al-
gorithm is an iterative algorithm similar to IQML, but with an
added spectral resampling layer and a modified stopping criterion
(Section 2.2.3). The key insight is that the elements of the spa-
tial correlation matrix can be linearly transformed into uniformly
sampled sums of sinusoids, regardless of the array geometry.

2. PROBLEM FORMULATION

Throughout the paper, matrices and vectors are denoted by bold
upper and lower case letters. The Euclidean norm of a vector x is
denoted by ‖x‖2 = (xHx)

1/2, where (·)H is the Hermitian trans-
pose. We denote by S the unit circle. Unit propagation vectors
will be denoted by p = [cosϕ, sinϕ]>, where ϕ is the corre-
sponding azimuth.
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2.1. Source Signal and Measurements

We assume a setup with Q microphones located at {rq ∈
R2}Qq=1, and K monochromatic and uncorrelated point sources
in the far-field indexed by the letter k. Each propagates in the
direction of the unit vector pk = [cosϕk, sinϕk]>, where ϕk is
the azimuth of the k-th source. Within a narrow band centered
at frequency ω, the baseband representation of the signal coming
from direction p ∈ S reads x(p, ω, t) = x̃(p, ω)ejωt,where
x̃(p, ω) is the emitted sound signal by a source located at p and
frequency ω. The intensity of the sound field is

I(p, ω)
def
= E

[
|x(p, ω, t)|2

]
=

K∑
k=1

σ2
k(ω)δ(p− pk), (1)

where σ(ω)2
k is the power of the k-th source and δ(p) is the Dirac

delta function on S. We assume frame-based processing, and the
expectation is over the randomness of x̃ from frame to frame. As
x̃ carries the phase, the assumption E [x̃] = 0 holds.

The received signal at the q-th microphone located at rq is
the integration of all plane waves along the unit circle:

yq(ω, t) =

∫
S
x(p, ω, t)e−jω〈p, rqc 〉 dp for q = 1, · · · , Q,

where c is the speed of sound. In this paper, we will take as mea-
surements the cross-correlations1 between the received signals
for a microphone pair (q, q′):

Vq,q′(ω)
def
= E

[
yq(ω, t)y∗q′(ω, t)

]
(2)

for q, q′ ∈ [1, Q] and q 6= q′. In practice, Vq,q′ is estimated by
averaging over frames; for simplicity we use the same symbol
for the empirical version. Since we assume uncorrelated sources,
the cross-correlation reduces to:

Vq,q′ (ω)=

∫
S

∫
S
E
[
x(p, t)x∗(p′, t)

]
e
−jω

〈
p,

rq
c

〉
e
jω

〈
p′,

r
q′
c

〉
dpdp′

=

∫
S
I(p, ω)e

−jω
〈
p,∆rq,q′

〉
dp =

K∑
k=1

σ2
k(ω)e

−jω
〈
pk,∆rq,q′

〉
,

(3)

where ∆rq,q′
def
=

rq−rq′
c

is the normalized baseline. Instead
of the more conventional approach to FRI sampling where the
microphone signals yq would be used as input [14], we use the
correlations Vq,q′ . This effectively increases the number of mea-
surements and allows us to use a small number of microphones.

2.2. Point Source Reconstruction

Following the generalized FRI sampling framework [13], we will
first identify the set of unknown sinusoidal samples and its rela-
tion with the given measurements (2). Then, the DOA estimation
is cast as a constrained optimization, cf. (7).

1 Alternatively, we can estimate the DOA directly from the received
microphone signals yq(ω, t). We leave the detailed discussions for a
future publication.

2.2.1. Relation between Measurements and the Uniform Sam-
ples of Sinusoids

Since p is supported on the circle, the intensity of (1) can be
equally written as a Fourier series expansion:

I(p, ω) =
∑
m∈Z

Îm(ω)Ym(p),

where Ym(p) is the Fourier series basis Ym(p) = Ym(ϕ) =

ejmϕ, and Îm(ω) is the associated expansion coefficient for a
sub-band centered at frequency ω:

Îm(ω) =
1

2π

∫
S
I(p, ω)Y ∗m(p) dp=

1

2π

K∑
k=1

σ2
k(ω)e

−jmϕk. (4)

Notice that the Fourier series coefficients Îm(ω) for m ∈ Z are
uniform samples of sinusoids, which are related with the cross-
correlation (3) as:

Vq,q′(ω) =

∫
S

∑
m∈Z

Îm(ω)Ym(p)e−jω〈p,∆rq,q′〉 dp

(a)
= 2π

∑
m∈Z

(−j)mJm(‖ω∆rq,q′‖2)Ym

(
∆rq,q′

‖∆rq,q′‖2

)
Îm (5)

where (a) is from Jacobi-Anger expansion [15] of the complex
exponential and Jm(·) is Bessel function of the first kind.

Therefore, we establish a linear mapping from the uniformly
sampled sinusoids Îm to the given measurements Vq,q′ . Con-
cretely, denote a lexicographically ordered vectorization of the
cross-correlations Vq,q′(ω), q 6= q′ by a(ω) ∈ CQ(Q−1), and
let the vector b(ω) be the Fourier series coefficients Îm(ω) for
m ∈ M, whereM is a set of considered Fourier coefficients2.
Define also a Q(Q− 1)× |M| matrix G(ω) as

g(q,q′),m(ω)
def
= (−j)mJm(‖ω∆rq,q′‖2)Ym

(
∆rq,q′

‖∆rq,q′‖2

)
,

(6)
where rows of G are indexed by microphone pairs (q, q′), and
columns of G are indexed by Fourier bins m. We can then con-
cisely write (5) as a(ω) = G(ω)b(ω).

2.2.2. Annihilation on the Circle

Since Îm in (4) is a weighted sum of uniformly sampled sinu-
soids, we know that Îm should satisfy a set of annihilation equa-
tions [12]: Îm ∗hm = 0. Here hm is the unknown annihilat-
ing filters to be recovered. A polynomial, whose coefficients are
specified by the filter hm, has roots located at e−jϕk [12]. The
source azimuths ϕk are subsequently reconstructed with polyno-
mial root-finding.

In a multi-band setting, the uniform sinusoidal samples
Îm(ω) are different for each sub-band. This is because the sig-
nal power σ2

k varies with the mid-band frequency ω in general.
However, since we have the same source locations ϕk for each
sub-band, we only need to find one filter hm (depending solely
on the source locations ϕk) that annihilates Îm(ω) for all ω-s:

Îm(ω) ∗
m
hm = 0 ∀ω.

2Note that these correspond to the spatial Fourier transform of I over
the circle, not to sources’ temporal spectra.
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Fig. 1. A Average DOA reconstruction error as a function of SNR. Lower
is better. B Average number of sources reconstructed for the case of two
sources separated by a fixed angle.

2.2.3. Reconstruction Algorithm

Following the discussion in the previous section, we reconstruct
the source locations jointly across all sub-bands. More specif-
ically, suppose we consider J sub-bands centered around fre-
quencies {ωj}Jj=1. Then, we formulate the FRIDA estimate as a
solution of the following constrained optimization:

min
b1,··· ,bJ

h∈H

J∑
i=1

∥∥ai −Gibi

∥∥2

2

subject to bi ∗ h = 0 for i = 1, · · · , J,

(7)

Here ai, bi and Gi are the cross-correlation, uniform sinusoidal
samples, and the linear mapping between them for the i-th sub-
band (6);H is a feasible set that the annihilating filter coefficients
belong to, e.g.,H =

{
h ∈ CK+1 : ‖h‖2 = 1

}
.

Note that (7) is a simple quadratic minimization with respect
to bi-s for a given annihilating filter h. By substituting the solu-
tion of bi (in function of h), we end up with an optimization for
h alone:

min
h∈H

hHΛ(h)h, (8)

where

Λ(h)=

J∑
i=1

TH(βi)
[
R(h)

(
GH

i Gi

)−1
RH(h)

]−1

T(βi).

Here βi = (GH
i Gi)

−1GH
i ai; T(·) builds a Toeplitz matrix from

the input vector; and R(·) is the right-dual matrix associated
with T(·) such that T(b)h = R(h)b, ∀b,h. This follows from
the commutativity of convolution: b ∗ h = h ∗ b.

In general, it is challenging to solve (8) directly. We use an it-
erative strategy, building Λ(h) with the reconstructed h from the
previous iteration. However, unlike similar approaches (e.g. [5]),
we do not aim at obtaining a convergent solution of (8) but rather
a valid solution such that the reconstructed sinusoidal samples
bi-s explain the given measurements up to a certain approxima-
tion level (ε2):

∑J
i=1 ‖ai −Gibi‖22 ≤ ε2. Readers are referred

to [13] for detailed discussions on the algorithmic details, e.g.,
choice of ε, implementation details, etc. We summarize the iter-
ative algorithm in Algorithm 1.

3. EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed
algorithm through numerical simulations and practical experi-
ments. We compare the performance of FRIDA to that of other

Algorithm 1: FRIDA: FRI-based DOA estimation
Input : cross-correlation of the microphone signals ai,

transformation matrix Gi, noise level ε2

Output: uniform sinusoidal samples bi, annihilating
filter coefficients h

for loop← 1 to max. initializations do
1 Initialize h with a random vector h(0);

for n← 1 to max. iterations do
2 Build Λ(h) with h = h(n−1) and update h(n)

by solving (8);
3 Re-synthesize b

(n)
i with the updated annihilating

filter h = h(n) as:

bi(h) = βi − (GH
i Gi)

−1RH(h)

·
(
R(h)(GH

i Gi)
−1RH(h)

)−1
R(h)βi

if
∑J

i=1

∥∥ai −Gib
(n)
i

∥∥2

2
≤ ε2 then

4 Terminate both loops;
end

end
end

5 bi ← b
(n)
i , h← h(n).

wideband algorithms: incoherent MUSIC [3], SRP-PHAT [2],
CSSM [6], WAVES [7], and TOPS [9].

The sampling frequency is fixed at 16 kHz. The narrow-
band sub-carriers are extracted by a 256-point short-time Fourier
transform (STFT) with a Hanning window and no overlap. We
use a triangular array of 24 microphones. Each edge is 30 cm
long and carries 8 microphones. The spacing of microphones
ranges from 8 mm to 25 cm. This geometry is that of the Pyra-
mic compact array designed at EPFL [16] and used to collect the
recordings for the practical experiments, see Fig. 2A.

The number of frequency bands used (out of the 128 narrow-
bands) is a key parameter for performance and was tuned for
each algorithm. FRIDA, MUSIC and SRP-PHAT use 20 bands,
CSSM and WAVES 10 bands, and TOPS 60 bands. In the syn-
thetic experiments, the source signals are all white noise to sim-
plify the choice of the sub-bands. For speech recordings, the
STFT bins with the largest power are chosen. All implementa-
tion details are in the supplementary material.

The reconstruction errors are quantified according to the dis-
tance on the unit circle defined as

dS(ϕ, ϕ̂) = min
s∈{±1}

s (ϕ− ϕ̂) mod 2π. (9)

For multiple DOA, the originals and their reconstructions are
matched to minimize the sum of errors.

3.1. Influence of Noise

We study the influence of noise on the algorithms through nu-
merical simulation. One source playing white noise is placed at
random on the unit circle. The propagation of sound is simulated
by applying fractional delay filters to generate the microphone
signals based on the array geometry. Finally, the algorithms are
run with additive white Gaussian noise of variance correspond-
ing to a wide range of SNR. The algorithms are fed with 256
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Fig. 2. A Pyramic array, a compact microphone array with 48 MEMS microphones distributed on the edges of a tetrahedron. For the experiments, only
the top triangle is used. B Locations of the loudspeakers and microphone array in experiments. C Reconstruction error for the different algorithms
applied to the recorded speech signals. D Reconstruction of 10 sources from only 9 microphones. The average reconstruction error is within 2◦.

DOA FRIDA MUSIC SRP-PHAT

0◦ −0.5± 0.4◦ 1.6± 0.3◦ 1.4± 0.2◦

5.5◦ 4.6± 0.2◦ −93.9± 41.2◦ −38.1± 8.6◦

Table 1. The accuracy of the reconstruction for recordings with sources
closely located at 0◦ and 5.5◦. The mean is computed as the logarithm
of the average of complex exponentials with argument given by the re-
construction angle. The second number is the average distance (9) from
the sample to the mean.

snapshots of 256 samples each. It should be noted that 256 snap-
shots correspond to a processing gain of about 24 dB. We run
500 rounds of Monte-Carlo simulation for each SNR value.

The simulation results in Fig. 1A show that FRIDA and MU-
SIC are the most robust with a breaking points slightly below
−20 dB. Next are SRP-PHAT and TOPS, breaking around 2 dB
and 4 dB higher, respectively. While WAVES initially seems to
perform as well as TOPS, it never reaches zero error. Least re-
sistant to noise is CSSM, breaking down as early as −5 dB. The
poor performance of WAVES and CSSM might be attributed to
poor initial estimates of the focusing frequencies.

3.2. Resolving Close Sources

Next, we study the minimum angle of separation necessary to
resolve distinct sources. We simulate two sources of white noise
at angles ϕ and ϕ + δ where δ is varied from 90◦ to 2.8◦. The
average error is then computed over ten realizations of the noise
for 120 values of ϕ. We mark a DOA as successfully recovered
if the reconstruction error is less than δ/2. This criterion is crude
for large δ, but for small δ, where performance is critical, it is
stringent. We use 256 snapshots and the SNR is set to 0 dB.

As seen in Fig. 1B, we find that FRIDA largely outperforms
the other algorithms. It always separates sources located as close
as 11.2◦, while the closest contenders, MUSIC and SRP-PHAT,
have difficulties for sources closer than 22.5◦. The coherent
methods perform worse than the incoherent ones; they even suf-
fer from a lack of precision in estimating a single source.

3.3. Experiments on Recorded Signals

Finally, we perform two experiments with recorded data to val-
idate the algorithm in non-ideal, real-world conditions. In the
first experiment, the Pyramic array is placed at the center of eight
loudspeakers (Fig. 2B, Set 1). All the loudspeakers are between
1.45 m and 2.45 m away from the array. Recordings are made
with all possible combinations of one, two, and three speakers

playing simultaneously (distinct) speech segments of 3 to 4 sec-
onds duration. Two of the speakers are located at 5.5◦ of each
other to test the resolving power of the algorithms.

The statistics of the reconstruction errors for the different al-
gorithms are shown in Fig. 2C. We find the coherent methods
WAVES and CSSM to perform well for one and two sources, but
break down for three sources. The TOPS method maintains an
acceptable but somewhat imprecise performance for more than
one source. FRIDA, MUSIC and SRP-PHAT perform best with
a median error within one degree from the ground truth. Where
FRIDA distinguishes itself from the conventional methods is for
closely spaced sources. This is highlighted in Table 1 where
the average reconstructed DOA for the sources located at 0◦ and
5.5◦ is shown. While all three methods correctly identify the first
source, only FRIDA is able to resolve the second.

The second experiment tests the ability of FRIDA to resolve
more sources than microphones are used. We place ten loud-
speakers (Fig. 2B, Set 2) around the Pyramic array and record
them simultaneously playing white noise. Then, we discard the
signals of all but nine microphones and run FRIDA. The algo-
rithm successfully reconstructs all DOA within 2◦ of the ground
truth, as shown in Fig. 2D. None of the subspace methods can
achieve this result. While SRP-PHAT is not limited in this way,
its resolution is lower (its error is ∼ 4◦ on this recording).

4. CONCLUSION

We introduced FRIDA, a new algorithm for DOA estimation of
sound sources. FRIDA relies on finite rate of innovation sam-
pling to do so efficiently on arbitrary array geometries, avoiding
any costly grid search. Its ability to use wideband signal informa-
tion makes it robust to many types of noise and interference. We
demonstrate that FRIDA compares favorably to the state-of-the-
art, and clearly outperforms all other algorithms when it comes
to resolving close sources. Moreover, FRIDA is notable for re-
solving more sources than microphones, as demonstrated exper-
imentally on recorded signals. Besides the logical extension to
the full spherical case, we want to extend the algorithm to work
on plane waves directly, rather than the cross-correlation coeffi-
cients. This will allow the algorithm to handle correlated as well
as uncorrelated sources. Finally, it is important for practical pur-
poses to improve the computational complexity of the algorithm.
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