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ABSTRACT
In this paper we focus on the problem of estimating the direc-
tions of arrival (DOA) of a set of incident plane waves. Unlike
many previous works, which assume that the received obser-
vations are only affected by additive noise, we consider the
setup where some phase noise also corrupts the data (as for
example observed in atmospheric sound propagation or un-
derwater acoustics). We propose a new methodology to solve
this problem in a Bayesian framework by resorting to a varia-
tional mean-field approximation. Our simulation results illus-
trate the benefits of carefully accounting for the phase noise
in the DOA estimation process.

Index Terms— Direction-of-arrival estimation, phase
noise, variational Bayesian approximation, mean-field ap-
proximation

1. INTRODUCTION

Estimating the directions of arrival (DOA) of propagating
plane waves is at the heart of many applicative domains in-
cluding sonar, radar and mobile telecommunications. Among
the rich literature dealing with this problem, the most popular
method is probably conventional beamforming [1] which can
roughly be interpreted as a least-square estimator. Per se, this
approach suffers from a lower limit on the resolution achiev-
able in the DOA estimation process (conditioned by the
length of the sensor array). To overcome this issue, so-called
“high-resolution” techniques, taking advantage of more prior
information on (the number and the nature of) the sources,
have been proposed in the literature (see e.g., [2, 3, 4, 5]).
In [2], the authors introduced the well-known MUSIC algo-
rithm which benefits from the knowledge of the number of
the sources and rely on the assumption that the noise and
the signal of interest live in perfectly separable subspaces.
More recently, a “compressive” beamforming approach was
proposed in [3, 4, 5], where a sparse prior was exploited to
address the DOA estimation problem.

The contributions mentioned above assume that the in-
cident plane waves are only corrupted by some additive
noise. Unfortunately, when the waves travel through highly
fluctuating media, as in the case of e.g., atmospheric sound
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propagation [6] or underwater acoustics [7], this model does
no longer describe accurately the physics underlying the
propagation process. In such cases, a multiplicative phase
noise typically corrupts the collected signal, making the cor-
responding DOA estimation problem quite challenging. We
address this problem in the present paper.

Our approach is inspired from the recent standard “high-
resolution” DOA methods [3, 4, 5] and some phase retrieval
algorithms presented in [8, 9]. More specifically, we model
the received signal as a sparse combination of elementary
signals (taken from a redundant dictionary) and assume that
the latter is corrupted by both additive and phase noise. Our
methodology is grounded on a probabilistic Bayesian frame-
work and relies on a variational mean-field approximation.
In particular, we show how to nicely incorporate fine noise-
phase models in this framework, extending in this respect, the
approaches proposed in [8, 9].

2. PROBLEM STATEMENT

Our derivations are based on the following formulation of the
DOA estimation problem: we consider an antenna composed
ofN sensors and assume that the collected observation vector
y ∈ CN can be expressed as

y = PDz + ω, (1)

where ω ∈ CN and P = diag({ejθn}Nn=1) ∈ CN×N play
respectively the role of an additive and a multiplicative phase
noise. Matrix D = [d1 . . .dM ] ∈ CN×M is made up of
the steering vectors di , [ej

2π
λ ∆ sin(φi) . . . ej

2π
λ ∆N sin(φi)]T ,

where φi’s are some potential angles of arrival, ∆ is the dis-
tance between two adjacent sensors, and λ is the wavelength
of the propagation waves.

With this formulation, assuming that y results from the
combination of a few waves arriving from different angles
φi’s, the DOA estimation problem is basically equivalent
to identifying the positions of the nonzero coefficients in z
(since each column of D corresponds to a particular angle
of arrival). In the standard DOA estimation problem, P is
assumed to be known with P = IN , where IN is the N ×N
identity matrix. In this case, the model connecting the un-
known vector z to the measurements y is linear; finding the
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position of the nonzero elements in z can then be carried out
with standard sparse-representation algorithms, see e.g., [10].

In this paper, we consider the more complex case where
P = diag({ejθn}Nn=1) and the θn’s are unknown. More
specifically, we assume that the phases θn’s obey the follow-
ing Markov model:

p(θ) =

N∏
n=2

p(θn|θn−1) p(θ1), (2)

with p(θn|θn−1) = N (a θn−1, σ
2
θ), ∀n ∈ {2, . . . ,M}, a ∈

R+, and p(θ1) = N (0, σ2
1). From a practical point of view,

this model allows us to describe spatial fluctuations of the
propagation medium all along the antenna; the strength of the
fluctuations is related to the value of parameter σ2

θ .
As noted in the introduction, assuming that P is unknown

renders the DOA estimation much more difficult since it in-
troduces uncertainties in the observation model. Before pro-
ceeding to the presentation of the proposed methodology to
address this issue, we draw some connections with other ap-
plicative fields:

• Our work relates first to the phase retrieval problem
(e.g., [11]) where the phase information of the obser-
vations is completely missing: only intensities or am-
plitudes are acquired. Formally, both problems share
- explicitely or not - the same observation model (1)
but differ in the prior distribution they enforce on the
phases θ, the absence of phase information being mod-
eled by a non-informative prior, such as a uniform law
(see [8, 9]).

• Then we note that, in top of being relevant for the DOA
estimation problem with fluctuating media, this model
is also of interest in the domain of digital communi-
cations where it can be used to characterize the trans-
mission of complex modulation symbols over a channel
affected by carrier phase noise, see e.g., [12].

3. BAYESIAN FORMULATION OF THE PROBLEM

We address the problem of estimating z from y when the re-
alizations of ω and θ are unknown. To that end, we first place
this problem into a Bayesian framework by defining suitable
additional prior distributions on the unknown quantities.

To account for the sparsity of z, we suppose that, ∀i ∈
{1, . . . ,M}, zi = xi · si with

p(xi) = CN (0, σ2
x), and p(si) = Ber(pi). (3)

This so-called Bernoulli-Gaussian model has been now
largely used in the literature to model sparse priors (see e.g.,
[13]). Next, we assume that p(ω) is a zero-mean Gaussian
distribution with variance σ2. This hypothesis is typically
justified by the central limit theorem under the assumption

that the additive noise corrupting the data results from the ag-
gregation of a large number of random parasitic contributions.
Finally, the probabilistic model describing the behavior of θ
is given by (2). As mentioned in the previous section, this
simple model accounts for local variations of the propagation
medium along the sensor network.

Based on this probabilistic model, we propose to look for
the solution of the following Minimum Mean Square Error
(MMSE) problem

ẑ = arg min
z̃

Ez|y
[
‖z− z̃‖22

]
, (4)

relying on the marginal posterior distribution p(z|y) =∫
θ
p(z,θ|y) dθ. The computation of this marginalization

being an intractable problem, we propose hereafter a practical
procedure based on a mean-field approximation of the joint
distribution p(z,θ|y) to approach the solution of (4).

4. THE PROPOSED PROCEDURE

Mean-field approximations aim at approximating a posterior
joint distribution by another one constrained to have a “sim-
ple” factorization while minimizing some distance with the
targeted distribution. In the following, we will look for an
approximation of p(z,θ|y), say q̂(z,θ), obeying the follow-
ing factorization q̂(z,θ) = q̂(θ)

∏M
i=1 q̂(zi). With this ap-

proximation of p(z,θ|y), the evaluation of the marginal with
respect to z is simplified since

∫
θ
q̂(z,θ) =

∏
i q̂(zi) and

the solution of the MMSE problem (4) can be approximated
component-wise as

ẑi '
∫
zi

zi q̂(zi) dzi.

A well-known algorithm to find a mean-field approxi-
mation of a target distribution is the so-called “Variational
Bayes Expectation-Maximization” (VBEM) algorithm (see
e.g., [14]). Particularized to our problem, this procedure
searches for a local minimum of the following optimization
problem:

q̂(z,θ)=arg min
q

∫
z,θ

q(z,θ)log

(
q(z,θ)

p(z,θ|y)

)
dz dθ

subject to q(z,θ) = q(θ)

M∏
i=1

q(zi),

by sequentially minimizing the cost function with respect to
q(θ) and q(zi), ∀i ∈ {1, . . . ,M}.

We show hereafter that the sequence of distributions gen-
erated by the VBEM algorithm, say {q(k)(θ), {q(k)(zi)}i}k,
admit simple parametric expressions. We detail these expres-
sions (at a given iteration of the procedure) in the following
subsections. Due to space limitation, we do not provide the
technical derivations but refer the reader to our companion re-
port [15] for more details. For the sake of clarity, we also omit
the iteration index (k) in the notations.
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4.1. Update of q(θ)

Under the condition1 of small σ2
θ , we can express the estimate

of q(θ) as a Gaussian distribution:

q(θ) = N (mθ,Σθ),

where Σ−1
θ = Λ−1

θ + diag

(
2

σ2
|η|
)
,

mθ = Σθ

(
diag

(
2

σ2
|η|
)

arg(η)

)
,

and Λ−1
θ is the precision matrix attached to the prior distribu-

tion on θ (2), i.e.,

Λ−1
θ =



1
σ2
1

+ a2

σ2
θ
− a
σ2
θ

0 0

− a
σ2
θ

1+a2

σ2
θ

. . . 0

0
. . . . . . − a

σ2
θ

0 0 − a
σ2
θ

1
σ2
θ

 . (5)

Vector η is defined as η , [η1, . . . , ηN ]T , with

ηn = yn
∑
i

〈zi〉∗d∗ni,

where d∗ni is the conjugate of the nth element of di, and 〈zi〉
is defined using the current estimate of q(zi) as

〈zi〉 ,
∫
zi

zi q(zi) dzi.

Note that the distribution q(θ) being Gaussian, the
marginals q(θn) come straightforwardly as

q(θn) = N (mθn ,Σθn),

where mθn (resp. Σθn ) is the nth element in mθ (resp. in the
diagonal of Σθ). In practice, estimating these parameters can
be efficiently implemented through a Kalman smoother [16]
because of the particular structure of the precision matrix (5).

4.2. Update of q(zi)

The iterates of the q(zi)’s take the form of a mixture of two
Gaussian distributions and only depend on the marginal dis-
tributions q(θn) of q(θ). More precisely, given that

q(zi) = q(xi, si) = q(xi|si) q(si),

we obtain

q(xi|si) = CN (mxi(si),Σxi(si)), (6)

q(si) ∝
√

Σxi(si) exp

(
mxi(si)

∗mxi(si)

Σxi(si)

)
p(si), (7)

1We justify this condition in the technical report [15].

where∝ and .H means respectively proportionality and trans-
pose complex conjugate,

Σxi(si) =
σ2σ2

x

σ2 + siσ2
xd

H
i di

, (8)

mxi(si) = si
σ2
x

σ2 + siσ2
xd

H
i di

dHi 〈ri〉, (9)

〈ri〉 = ȳ −
∑
k 6=i

q(sk = 1)mxk(sk = 1)dk, (10)

ȳ =

[
yne
−jmθn I1(1/Σθn)

I0(1/Σθn)

]
n={1...M}

, (11)

and I0 (resp. I1) stands for the modified Bessel of the first
kind of order 0 (resp. 1).

We note that the update equation (6)-(11) share some con-
nections with the phase retrieval algorithm presented in [9].
The latter, relying also on a VBEM algorithm, differs from
the proposed procedure in the definition of the prior distri-
butions (2) and (3), respectively replaced by a uniform and
a Gaussian distributions. In practice, both procedures share
a similar structure. Leaving out the choice made here of a
sparse-enforcing prior on z, the main difference lies in the
“reconstructed” phases mθn in (11): while their definition re-
lies here on the parameters of the Markov chain through the
precision matrix (5), they only depend on the observations in
[9] where a non-informative prior is considered.

4.3. Noise estimation

As emphasized in [13], the estimation of model parameters
can easily be embedded within the VBEM procedure. Among
them, the noise variance is of particular interest. Measure of
the (mean) discrepancies between the observations and the
assumed model, its iterative estimation usually helps the con-
vergence of the algorithm to a proper local minimum, as ob-
served in [13]. Particularized to model (1)-(3), this leads to

σ̂2= arg max
σ2

∫
z

q(z,θ) log p(z,θ,y;σ2) dz dθ,

=
1

N

(
yHy − 2

∑
i

<
[
q(si=1)mxi(si=1)ȳHdi

]
+
∑
i

∑
k 6=i

q(si=1) q(sk=1)mxi(si=1)∗mxk(sk=1)dHi dk

+
∑
i

q(si=1)

(
Σxi(si=1)+

∣∣mxi(si=1)
∣∣2)dHi di

)
.

In the following, we will refer to the proposed procedure as
“paVBEM” for “phase-aware VBEM algorithm”.

5. EXPERIMENTS

In this section, we assess numerically the effectiveness of the
proposed approach. We consider the problem of identifying
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Fig. 1. Evolution of the (averaged) normalized correlation as
a function of the variance σ2 when K = 2.

the directions of arrival of K plane waves from N = 256
observations (K will be specified later on). We assume that
the angles of the K incident waves can be written as φk =
−π2 + ik

π
50 with ik ∈ [1, 50], ∀k ∈ {1, . . . ,K}. The set of

angles {φi = −π + i π50}i∈{1,...,50} together with the choice
of the parameter ∆/λ = 4 define the columns of the dictio-
nary D (see section 2). We set the following parameters for
the phase Markov model (2): σ2

1 = 106, σ2
θ = 1 and a = 0.8.

This corresponds to the situation where one has a large uncer-
tainty on the initial value of the phase noise but connections
exist between the phase noise on adjacent sensors.

As well as for the classic phase retrieval problem, the so-
lution of (4) can only be found up to a global phase. Hence,
computing the mean square distance between the ground truth
z and its reconstruction ẑ does not constitute a relevant figure
of merit. Instead, we consider their normalized correlation,
|zH ẑ|
‖z‖2‖ẑ‖2 . This quantity is averaged over 50 realizations for
each point of simulation. We compare the performance of the
following algorithms: i) the conventional beamforming intro-
duced in [1] ( ); ii) the so-called prVBEM algorithm pro-
posed in [9] as a solution to the phase retrieval problem ( );
iii) the paVBEM procedure described in section 4 ( ); iv)
a relaxed version of paVBEM in which the sparsity of z is not
exploited but replaced by a Gaussian prior ( ).

The performance of these procedures are illustrated in
Fig. 1 and 2 as a function of the noise variance σ2 for K = 2
and K = 5, respectively. We see that the beamforming al-
gorithm, which was originally proposed to solve the DOA
estimation problem in the standard linear setup (P = IN ),
fails to cope with the presence of fluctuations in the phase
θ. The three other algorithms achieve different levels of
performance, depending on the power of the additive noise
and the number of incident waves. We note that all these
procedures are derived from a similar optimization procedure
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Fig. 2. Evolution of the (averaged) normalized correlation as
a function of the variance σ2 when K = 5.

but consider different degrees of knowledge on θ and z. In
[9], the authors assume that the phase is uniformly distributed
and the sparse nature of z is ignored; in the relaxed version
of the proposed procedure (see [15]) the phase model (2) is
exploited but the sparsity of z is not taken into account; fi-
nally, as explained previously, the methodology presented in
this paper integrates both the phase model (2) and the sparsity
of z in the estimation process. We see from Fig. 1 and 2 that
the performance of these algorithms directly relates to the
level of information they exploit: the proposed methodology
outperforms its relaxed counterpart which, in turn, leads to
better performance than the procedure proposed in [9].

We also notice that the procedures achieve better perfor-
mance when K = 5 than K = 2. This counter-intuitive
behavior is typical for phase-retrieval problems. In fact, it is
easy to see that, when no phase information is available (i.e.,
θn is uniform on [0, 2π]), only the modulus of yn provides
some information on z. In such a case, the worst situation
occurs when K = 1 since all the elements of D has the same
modulus (equal to 1) and the observations thus provide no in-
formation on z. The setup K = 2 is close to this worst case,
hence explaining the observed behavior.

6. CONCLUSION

We have presented a novel algorithm able to estimate DOA in
environments corrupted by phase noise. Our approach relies
on a mean-field approximation and exploits two types of pri-
ors: on the DOA through a sparse-enforcing distribution and
on the phase noise through a Markov model. Our experiments
have confronted the proposed approach to conventional beam-
forming and similar variational approaches handicapped by
non-informative priors. In this regard, its good performance
tends to prove a successful inclusion of the priors. Future
work will include further assessment in underwater acoustics.
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