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ABSTRACT

In this paper, a new perturbation analysis algorithm for the
MUltiple SIgnal Classification (MUSIC) estimator applied to
a Hermitian Toeplitz covariance matrix is presented. Inspired
by the perspective that the MUSIC algorithm can be recog-
nized as a structured matrix approximation, the perturbation
of parameter estimates can be predicted more accurately by
seeking the minimum of a Frobenius norm. The prediction
results are analytically expressed through a weighted least
squares method. The performance of the MUSIC estimators
can also be predicted using our algorithm.

Index Terms— Toeplitz, MUSIC, Perturbation analysis.

1. INTRODUCTION

MUltiple SIgnal Classification (MUSIC) is a subspace-based
algorithm with high estimation accuracy and super resolution
capability. The algorithm is widely used in direction of arrival
(DOA) estimation, spectral analysis and system identification
[1]. The core step of MUSIC is eigen-decomposing the sig-
nal covariance matrix (CVM) [2]. In practice, the exact CVM
is unknown. An estimated CVM is a perturbed version of the
exact CVM and is drawn from sample data, which leads to the
perturbation of estimated parameters. Therefore, the pertur-
bation analysis of MUSIC, which is used to predict the pertur-
bation of signal parameters given the estimation error of the
CVM, is directly related to the performance analysis of the
MUSIC estimator. For the spectrum-MUSIC estimator [3],
the minimum point shift of the objective function caused by
subspace perturbation was analyzed in [4]. In [5], an operator-
based approach was studied to predict the perturbation of the
root-MUSIC algorithm. Other results were also presented in
[6][7]. These approaches were based on a first-order approxi-
mation of the objective function. However, the expressions of
the perturbation in the previous works were complicated for
discussion, and the first-order approximation was not accurate
enough for the perturbation predictions [8].

The performance of MUSIC is strongly dependent on
the quality of CVM estimation. Although the sample CVM
is often considered as the maximum likelihood estimator, a
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Hermitian Toeplitz constraint for the CVM estimator is quite
helpful for improving the performance of MUSIC if the un-
derlying signal is stationary [9]. The result in [10] showed
that the Toeplitz rectification of the CVM can improve the es-
timation accuracy in low SNR situations. Another example is
that when the auto-covariance function (ACF) of continuous
lags can be estimated from sample data, a Hermitian Toeplitz
CVM can be built with sample ACF by exploring the sta-
tionary feature of the underlying signal. Nonuniform arrays,
such as minimum redundancy arrays [11] and coprime ar-
rays [12][13], essentially construct a virtual co-array that can
fully measure all the ACFs on the consecutive lags [14]. For
the performance analysis of MUSIC with Hermitian Toeplitz
CVM such as [15], a more accurate perturbation analysis is
helpful in this context.

Inspired by the perspective that the MUSIC estimation
can be recognized as a structured matrix approximation, we
propose a new perturbation analysis algorithm for the MUSIC
estimator that can avoid the complicated procedures adopted
in the previous approaches. For a Hermitian Toeplitz CVM,
the parameter perturbation can be predicted by finding the
minimum of a Frobenius norm. Using weighted least squares,
the prediction results are provided alongside concise analyti-
cal expressions. We demonstrate that the new algorithm pro-
vides higher prediction accuracy compared to previous re-
sults. Moreover, the mean square error (MSE) of the MUSIC
estimator can be predicted given the second-order statistics of
the ACF estimate. As an example, the performance analysis
of a DOA estimator is given for a coprime array.

2. PROBLEM FORMULATION

Let a(ω) =
[
1, ejω, . . . , ej(M−1)ω

]T
be a steering vector for

the frequency ω. (·)T denotes vector or matrix transposi-
tion. A white-noise-corrupted stationary signal with K un-
correlated sinusoids has the following CVM of an M × M
Hermitian Toeplitz structure [3]:

R(ω,p, σ2) =

K∑
k=1

pka(ωk)aH(ωk) + σ2IM . (1)

In (1), (·)H denotes the conjugate transpose, ω = [ω1, . . . , ωK ],
p = [p1, . . . , pK ] are the frequencies and powers of the K
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sinusoids, σ2 is the noise power, and IM is the identity matrix
of size M . Denote R = T (c) to indicate that R is Hermitian
Toeplitz with its first column equals to c = [c0, . . . , cM−1]

T ,
where cr is the signal ACF of lag r:

cr =

K∑
k=1

pke
jωkr + σ2δr, |r| ≤M − 1. (2)

In (2), δr is the discrete Dirac function. Due to the conjugate
symmetry of the ACF for a stationary signal, c−m = c∗m.

In this paper, we assume that the estimated CVM is Her-
mitian Toeplitz constrained:

R̂ = T (ĉ), (3)

where ĉ = [ĉ0, ĉ1, . . . , ĉM−1]
T represents the estimation of

the ACF. The ACF estimation error is ∆cr = ĉr − cr for all
lags |r| ≤ M − 1. From a perturbed CVM R̂, a MUSIC
estimator derives the perturbed estimate ω̂k, 1 ≤ k ≤ K.
Then, the corresponding power p̂k can be calculated given
the frequency estimation. The exact parameter perturbation
of the kth signal is

∆ω̂k = ω̂k − ωk, ∆p̂k = p̂k − pk. (4)

In the perturbation analysis of MUSIC, one needs to predict
the above perturbations, given the true CVM R and its per-
turbed estimation R̂ without applying MUSIC directly. Sup-
pose that ∆ω̄k and ∆p̄k are predicted perturbations and that

∆ω̄k = ω̄k − ωk, ∆p̄k = p̄k − pk, (5)

where ω̄k, p̄k are the predicted frequency and power, respec-
tively. A more accurate perturbation analysis should yield a
smaller difference between ∆ω̄k and ∆ω̂k.

3. PERTURBATION ANALYSIS OF MUSIC

Caratheodory’s theorem [3] states that a unique parameter set
(ω,p, σ2) can be derived from a structured CVM. Combin-
ing this with Eq.(1), a one-to-one mapping exists between a
parameter set (ω,p, σ2) and a structured CVM, R. The arith-
metic steps in MUSIC can be interpreted from a constrained
CVM approximation perspective.

• Step 1: Low rank matrix approximation.

An estimated CVM R̂ is eigendecomposed as

R̂ = ŜΛ̂SŜH + ĜΛ̂GĜH + σ̂2IM , (6)

where Λ̂S and Λ̂G are diagonal matrices containing the
large and small eigenvalues, respectively, Ŝ and Ĝ are
their corresponding eigenvectors. The noise power σ̂2

is estimated that the average of the diagonal elements
in Λ̂G equals zero. Following Eckart-Young’s theo-
rem [16], the best rank-K matrix approximation to R̂−
σ̂2IM in the Frobenius norm sense is

MK = ŜΛ̂SŜH . (7)

• Step 2: Structured matrix approximation.

The sinusoid frequencies ω̂ are determined at K local
minima of the following function.

ω̂k = arg min
ω

aH(ω)ĜĜHa(ω). (8)

Due to the orthogonality between Ŝ and Ĝ, (8) attempts
to find K vectors a(ω̂k) from the array manifold which
most closely fit the signal subspace span{Ŝ}.
The sinusoid powers p̂ are determined via minimiza-
tion of the Frobenius norm of matrix differences as

p̂ = arg min
p

∥∥∥∥∥
K∑

k=1

pka(ω̂k)aH(ω̂k)−MK

∥∥∥∥∥
2

F

. (9)

Because Ŝ span the column space of MK , the matrix

QK =

K∑
k=1

p̂ka(ω̂k)aH(ω̂k) (10)

is a rank-K Hermitian Toeplitz matrix that is closest to
MK in the Frobenius norm sense.

To summarize, the procedure for MUSIC can be divided
into two parts. First, a rank-K matrix MK that is closest to
R̂ − σ̂2IM is found. Second, a rank-K Hermitian Toeplitz
matrix QK that is closest to MK is found. Combining these
two parts, the MUSIC estimator can be recognized as find-
ing a structured matrix QK + σ̂2IM , which is a structured
approximation to R̂ in the Frobenius norm sense.

Suppose that ω̄ = [ω̄1, ω̄2, . . . , ω̄K ] are predicted sinu-
soid frequencies, p̄ = [p̄1, p̄2, . . . , p̄K ] are their respective
powers, and σ̄2 is the predicted noise power. The parameter
set (ω̄, p̄, σ̄2) corresponds to a structured CVM, given by

R(ω̄, p̄, σ̄2) =

K∑
k=1

p̄ka(ω̄k)aH(ω̄k) + σ̄2IM . (11)

Then, a MUSIC estimator, which is considered as a con-
strained CVM approximation, would minimize

F =
∥∥∥R (ω̄, p̄, σ̄2

)
− R̂

∥∥∥2

F
. (12)

The prediction of perturbations can be performed by seeking
the minimum of the above equation, which is detailed in the
following subsections.

3.1. Factorization of the structured CVM Approximation

By the Hermitian Toeplitz structure, we can write R(ω̄, p̄, σ̄2) =
T (c̄), where c̄ = [c̄0, c̄1, . . . , c̄M−1]

T is the first column. The
difference between R

(
ω̄, p̄, σ̄2

)
and R̂ is

R
(
ω̄, p̄, σ̄2

)
− R̂ = T (c̄)− T (ĉ)

= T (c̄− c)− T (ĉ− c), (13)
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where ĉ−c is the perturbation of the ACF. Using the Toeplitz
property, equation (12) becomes

F =

M−1∑
r=−M+1

(M − |r|) ((c̄r − cr)−∆ĉr)
2
. (14)

Assuming that ∆ω̄k,∆p̄k and c̄− c are sufficiently small, we
can approximate c̄− c by the first-order of Taylor expansion:

c̄r − cr =

K∑
k=1

[
p̄ke

jω̄kr − pkejωkr
]

+
(
σ̄2 − σ2

)
δr

'
K∑

k=1

[
ejωkr∆p̄k + jrejωkrp̄k∆ω̄k

]
+ ∆σ̄2δr.

(15)

Substituting c̄r − cr in equation (14) by its approximation in
(15), F is factorized into a combination of the perturbation
predictions ∆ω̄k,∆p̄k,∆σ̄

2 and ACF perturbations ∆ĉr.

3.2. F-Norm Minimization and Perturbation Analysis

For r = 0, one can always find a σ̄2 that satisfies c̄0 − c0 =
∆ĉ0. The diagonal elements in R

(
ω̄, p̄, σ̄2

)
− R̂ are zero

when F reaches the minimum. Therefore, only the off-
diagonal elements contribute to the minimum of F . Denote

∆p̄ = [∆p̄1, . . . ,∆p̄K ]
T
, (16a)

p̄∆ω̄ = [p̄1∆ω̄1, . . . , p̄K∆ω̄K ]
T
, (16b)

∆Ĉ = [∆ĉ1−M , . . . ,∆ĉ−1,∆ĉ1, . . . ,∆ĉM−1]
T
. (16c)

Equation (14) can be written as

F =

(
J

[
∆p̄

p̄∆ω̄

]
−∆Ĉ

)H

W

(
J

[
∆p̄

p̄∆ω̄

]
−∆Ĉ

)
. (17)

In (17), W = diag [1, 2, . . . ,M − 1,M − 1,M − 2, . . . , 1]
is a weighting matrix, J = [Jp,Jω], and Jp,Jω are 2(M −
1)×K coefficient matrices, detailed as

Jp =



e(1−M)jω1 . . . e(1−M)jωK

...
. . .

...
e−jω1 . . . e−jωK

ejω1 . . . ejωK

...
. . .

...
e(M−1)jω1 . . . e(M−1)jωK


, (18)

Jω =

[
d

dω1
Jp(1), . . . ,

d

dωK
Jp(K)

]
, (19)

where Jp(k) is the kth column vector in Jp, and d
dωk

is the
derivative with respect to ωk.

As discussed above, a MUSIC estimator can be regarded
as a minimization of F in (17), which can be solved using
weighted least squares:[

∆p̄
p̄∆ω̄

]
= L(ω)∆Ĉ, (20)

where L(ω) =
(
JHWJ

)−1
JHW is a 2K × 2(M − 1) ma-

trix. Using {·}k to represent the kth element of a column
vector, ∆p̄k and ∆ω̄k can be represented as

∆p̄k =
{

L(ω)∆Ĉ
}
k
, (21a)

∆ω̄k =

{
L(ω)∆Ĉ

}
k+K

pk + ∆p̄k
. (21b)

3.3. Performance of the MUSIC Estimator

If the ACF estimator is unbiased, i.e., E (ĉr) = cr for all
|r| ≤M − 1, the minimizer when (17) is approximated to the
first order is also unbiased due to the linearity in (20). For the
second-order statistics of ∆ω̄ and ∆p̄, consider the variance-
covariance matrix of [∆p̄, p̄∆ω̄]

T , which is presented in the
following 2K × 2K matrix:

Θ = E

([
∆p̄

p̄∆ω̄

] [
∆p̄

p̄∆ω̄

]T)
= L(ω)E

(
∆Ĉ∆ĈT

)
LT (ω). (22)

In (22), E
(

∆Ĉ∆ĈT
)

is the second-order statistics of the
ACF estimation, whose detailed expression is determined by
the considered application. Under the circumstances as in
[17][18], the second-order statistics are readily given. The
MSE of the MUSIC estimator can be drawn from the diago-
nal elements of Θ directly:

var (p̄k) = {Θ}k,k , (23a)

var (ω̄k) =
{Θ}k+K,k+K

p2
k

. (23b)

An intuitive explanation of (23) can be provided. First, the
MSE of ω̂k is in general inversely proportional to the square
of the sinusoid power. Second, L(ω) influences the perfor-
mance as well. For example, when two distinct frequencies
are similar, the condition number of L(ω) becomes large,
which increases the MSE of the estimator.

4. NUMERICAL RESULTS AND DISCUSSIONS

The validity of the new algorithm is verified by comparing
the theoretical predictions to the simulation results. For il-
lustration purposes, we consider a coprime array with N1 =
5, N2 = 7 sensors, and the unit inter-element spacing is half
of a wavelength. In [14], it is shown that when using MU-
SIC for the DOA estimation, an empirical Hermitian Toeplitz
CVM would be equivalent to the CVM obtained by the spatial
smoothing in [12]. In our simulations, a Hermitian Toeplitz
CVM of sizeN1N2+1 = 36 is generated. In one experiment,
the CVM R̂ is estimated using 300 snapshots.
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4.1. Perturbation Prediction

Two uncorrelated narrowband signals with zero-mean, com-
plex circular Gaussian amplitudes and equal power arrive at
the arrays from normalized DOA ω1 = −0.1 and ω2 = 0.1.
The noise on the array elements is assumed Gaussian white,
SNR=10dB (SNR is defined at one sensor as the ratio between
the power of one incident signal to the noise power). The
predicted DOA perturbation of the first source ∆ω̄1 from our
approach is compared with the result given by Krim [5]. A
total of 3,000 Monte Carlo trials were performed, and we uti-
lize histograms to present the distribution of ∆ω̄1−∆ω̂1, i.e.,
the difference between the predicted and true perturbations of
the signal angular frequency. In Fig.1(a), the differences ob-
tained by the proposed method are more concentrated about
zero, which implies a more accurate prediction.

Moreover, we compare the prediction accuracy for SNRs
ranging from 0 dB to 30 dB, where each SNR is assigned 500
trials to calculate the standard deviation of ∆ω̄1 − ∆ω̂1. In
Fig.1(b), Std (∆ω̄1 −∆ω̂1) by our prediction is consistently
lower, showing that our method obtains a higher accuracy.
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Fig. 1. A comparison of the distribution of ∆ω̄1 −∆ω̂1. The
result when SNR=10dB is shown by histogram in (a), and the
standard deviation under various SNRs is shown in (b).

4.2. Performance Analysis of coprime array

To evaluate the predicted performance of the MUSIC estima-
tor in coprime array, we maintain the parameters as in the
previous subsection except that the powers of the sources are
p1 : p2 = 3 : 1, that Source 1 is 5dB stronger than Source 2.
The MSEs of the DOA estimator for SNRs between -20 dB
and 30 dB are derived (SNR=p1/σ

2). The theoretical MSE of
the DOA estimator is given by (22), where the second-order
statistics of the co-array signal are computed by the coprime
parameters. The result is compared to empirical experiment
with 500 trials.
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Fig. 2. Predicted vs. experimental MSE of the MUSIC DOA
estimator of both sources. The predicted MSEs are plotted
with dashed lines, and the experimental MSEs are indicated
by ♦ and4 for the two sources.

Fig.2 shows the comparison between the predicted and
the experimental performance of the DOA estimator. Be-
cause the two sources have different powers, the MSE of the
stronger source is lower than that of the weaker source. Under
high SNRs, the experimental MSE of the MUSIC estimator
matches the predicted MSE very well. When the SNR is low,
the DOA estimator fails due to subspace swap or false detec-
tion. It is therefore verified that the performance of coprime
arrays can be predicted using our method.

5. CONCLUSION

We presented a new perturbation analysis algorithm for the
MUSIC estimator in which the estimated CVM is Hermitian
Toeplitz. Analytic expressions for perturbation predictions
were given, and the simulation results demonstrated that the
new algorithm obtained a higher accuracy than the previous
methods. The new algorithm can also be used for the perfor-
mance analysis of the Hermitian-Toeplitz-covariance-based
applications with high accuracy, such as coprime arrays.
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