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ABSTRACT
In this paper, a new method for two-dimensional (2-D)
direction-of-arrival (DOA) estimation is proposed. We first
reconstruct the covariance matrix of the coarray with block-
Toeplitz structure and then retrieve the DOAs. Our method is
computationally efficient as supported by the derived closed-
form expression for the estimated covariance matrix. Unlike
other methods, which require fully loaded arrays, the pro-
posed method can be applied in the case of common rectan-
gular arrays with arbitrary geometries. The estimated azimuth
and elevation angles are automatically paired. Moreover, our
method is of high estimation accuracy and immune to the
angle ambiguity effect. Numerical simulations are carried out
to verify the effectiveness of the proposed method.

Index Terms— 2-D DOA estimation, Toeplitz-block-
Toeplitz structure, generalized rectangular array (GRA)

1. INTRODUCTION

The problem of two-dimensional (2-D) direction-of-arrival
(DOA) estimation, where both azimuth and elevation angles
of the incident signals are estimated jointly by using a planar
array, has been attracted much attention in recent years. The
selection of the array geometry largely affects the estimation
accuracy and computational efficiency and thus has been ex-
tensively investigated in literature [1–3]. In particular, the
uniform rectangular array (URA) can be regarded as the 2-D
extension of the uniform linear array (ULA) and hence sev-
eral computationally efficient methods have been proposed
for 2-D DOA estimation in URAs [4], [1], among which the
2-D ESPRIT [4] is an easy-to-implement algorithm since the
shift invariance property of the array output. However, the
2-D ESPRIT is not applicable to a sparse rectangular array
(SRA) where the sensors are not fully implemented. The clas-
sic types of SRAs are L/T-shaped array and cross array [5],
among which the L-shaped array has the best estimation per-
formance owing to its larger array aperture as defined by the
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largest distance among the sensors [6]. In addition, many
methods have been proposed by exploring the structured
information of the array geometry. For instance, in the L-
shaped array, since the cross-correlation matrix between the
received data of the two orthogonal ULAs can eliminate addi-
tive noises, several methods have been proposed by utilizing
the cross-correlation matrix [3,7–9]. However, they cannot be
extended for the common SRAs. Another drawback of these
methods is that they cannot deal with the angle ambiguity
problem when multiple sources have the same azimuth or el-
evation angles. The subspace-based method 2-D MUSIC [2]
is suitable for any SRAs and is immune to the angle ambi-
guity problem. Nevertheless, the 2-D MUSIC requires a 2-D
search over the parameter space, which is computationally
expensive. Furthermore, the maximum number of detectable
sources of the 2-D MUSIC is limited in SRAs, which should
be improved.

In this paper, we propose a computationally efficient
method for 2-D DOA estimation. We first formulate a convex
optimization problem for reconstructing the covariance ma-
trix of the coarray and then develop a closed-form solution
for the covariance matrix. Finally, the DOAs are retrieved
by using the generalized Vandermonde decomposition the-
orem [10]. Our method has the following advantages: 1) it
can be applied to common rectangular array geometries with
high estimation accuracy, e.g., URA, L/T-shaped array and
SRA with arbitrary geometry; 2) it is computationally effi-
cient because of the closed-form solution. 3) the azimuth and
elevation angles are automatically paired; 4) it is immune to
the angle ambiguity effect; 5) it is able to locate more sources
than directly using the sample covariance matrix.

2. SIGNAL MODEL

We consider a generalized rectangular array (GRA), whose
geometry is illustrated in Fig. 1. The sensors are located on
a grid with d being the minimum inter-element spacing. The
GRAs considered in this paper include the URA and the SRA.
The URA contains N = Nx ×Ny sensors where Nx and Ny

are the number of sensors along x- and y-directions, respec-
tively. The SRA can be a URA with some ”missing” sensors
and we denote the number of its sensors as M, which is small-
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Fig. 1. Array geometry of the GRA.

er than N . In particular, when the SRA is an L-shaped array
consisting of two orthogonal ULAs, M = Nx +Ny − 1. For
better illustration, we set d to half-wavelength and vectorize
the GRA along y-direction. The sensor index set of the new
array is defined as Ω = {Ω1, · · · ,ΩM}, where Ω is sorted in
ascending order with Ω1 = 1. For example, the Ω with re-
spect to an L-shaped array consisting of two 4-element ULAs
equals {1, 2, 3, 4, 5, 9, 13}. By definition, it is easy to see that
Ω = {1, · · · ,N} in the URA case.

Suppose K far-field narrowband signals impinge onto a
GRA as illustrated in Fig. 1 with θk and ϕk being the eleva-
tion and azimuth angles, respectively, and αk and βk the elec-
trical angles in x-direction and y-direction of the k-th signal,
respectively. From basic geometric knowledge, the electrical
angles have the following relations with respect to elevation
and azimuth angles,

ϕk = tan−1

(
cos(βk)

cos(αk)

)
θk = sin−1

(√
cos2(αk) + cos2(βk)

)
.

(1)

Hence, when the electrical angles αk and βk are retrieved, the
physical azimuth and elevation angles can be uniquely deter-
mined by (1).

The observation model of the array output with L snap-
shots is,

XΩ = AΩS + VΩ, (2)

whereXΩ ∈ CM×L is the output of the vectorized version of
the GRA along y-direction,AΩ = ΓΩ(Ax⊙Ay) = ΓΩA ∈
CM×K is the manifold matrix of the array, in which ΓΩ ∈
CM×N is the selection matrix such that the m-th row of ΓΩ

contains all zeros but a single 1 at the Ωm-th position andA ,
Ax⊙Ay .1 Ax = [a(α1), · · · ,a(αK)] ∈ CNx×K andAy =
[a(β1), · · · ,a(βK)] ∈ CNy×K denote the manifold matrices
of the ULAs along x- and y-directions, respectively, where
axk

= [1, exp jπ sin(αk), · · · , exp j(Nx − 1)π sin(αk)]
T ,

ayk
= [1, exp jπ sin(βk), · · · , exp j(Ny − 1)π sin(βk)]

T .
With the definitions above, the covariance matrix of XΩ can

1A⊙B denotes the Khatri-Rao product of matrices A and B.

be given as,

RΩ = E[XΩX
H
Ω ]

= ΓΩAΩRSA
H
ΩΓH

Ω + σIΩ

= ΓΩT(u,v)ΓH
Ω + σIΩ

= TΩ(u,v) + σIΩ,

(3)

where T(u,v) ∈ CN×N is a Toeplitz-block-Toeplitz ma-
trix determined only by vectors u =

[
u(1); · · · ;u(Nx)

]
and

v =
[
v(1); · · · ;v(Nx)

]
, σ is the noise power. In particular,

T(u,v) has the following structure,

T =


T1 T2 · · · TNx

T−2 T1 · · · TNx−1

...
...

. . .
...

T−Nx T−(Nx−1) · · · T1

 , (4)

where Tn is a Toeplitz non-Hermitian matrix with size Ny ×
Ny , i.e., Tn is determined by u(n) and v(n) where u(n) ∈
CNy equals the first row of Tn and v(n) ∈ CNy−1 is the first
column of Tn except its first element. Based on the definition,
T(u,v) can be rewritten as,

T(u,v) =
K∑

k=1

pk
(
a(αk)a

H(αk)
)
⊗
(
a(βk)a

H(βk)
)
, (5)

which turns out to be a positive semidefinite matrix with rank
K. In practice, the true covariance matrix RΩ cannot be ob-
tained and is usually estimated with L snapshots as R̂Ω =
1
LXΩX

H
Ω , where R̂Ω is error-contaminated due to the finite

snapshots. We denote the error component as

EΩ = R̂Ω −RΩ

= R̂Ω − TΩ(u,v)− σI,
(6)

where EΩ consists of signal-signal and signal-noise cross
correlation terms which are not 0 due to finite snapshot ef-
fect. According to [11], the vectorization of EΩ satisfies the
following asymptotic Gaussian distribution,

W
− 1

2

Ω vec(EΩ) ∼ AsN(0, IM2), (7)

whereWΩ = 1
LR

T
Ω ⊗RΩ.

3. THE PROPOSED METHOD

According to the extended invariance principle (EXIP) [12], a
large-sample maximum likelihood (ML) estimate of T(u,v)
is obtained by solving the following optimization problem,2

min
u,v

∥∥∥Qvec(R̂Ω − TΩ(u,v)− σI)
∥∥∥2
2
, (8)

where Q = W
− 1

2

Ω . Problem (8) can be solved by CVX,
which however, is time-consuming. In the following, we pro-
pose an efficient solution by deriving a closed-form expres-
sion. Using the KKT conditions, the optimal solution of (8)

2For simplicity, the noise power σ is estimated as the smallest eigenvalue
of R̂Ω.
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satisfies the following equality,

T∗(C) = T∗(CT(u,v)C), (9)

whereC = ΓT
ΩR̂

−1
Ω ΓΩ and T∗(C) is defined as follows. Let

C have the following structure:

C =


C11 C12 · · · C1Nx

C21 C22 C2Nx

...
...

. . .
...

CNx1 · · · CNxNx

 , (10)

whereCmn ∈ CNy×Ny , and letD = [DN−1; · · · ;D−(N−1)],
where Dn is to take the sum of the n-th diagonal of C in a
subarraywise manner. Then T∗(C) is given by T∗(C) =
T ∗(D), where T ∗(Λ) = [w−(N−1), · · · , wN−1]

T , with wi

being the sum of the i-th diagonal of Λ. Equation (9) can be
used to derive a closed-form solution as detailed below.

We first rewrite the right-hand side of (9) as,3

T∗(CT(u,v)C) =


Z(1)

Z(2)

...
Z(Nx)



J (Nx)

...
J (2)

J̄

 , (11)

where

Z(n) =



T∗T [C:,ϕ1C{N+1−ϕ1},:
]

...
T∗T [C:,ϕNy

C{N+1−ϕNy},:
]

T∗T [C:,ψ1C{N+1−ψ1},:
]

...
T∗T [C:,ψNy−1

C{N+1−ψNy−1},:
]


, (12)

J =


J (1)

J (2)

...
J (Nx)

 , (13)

in which,

ϕc =

Nx−n+1∪
m=1

{
(m− 1)Ny + 1, · · · ,mNy + 1− c

}
c = 1, · · · , Ny,

(14)

ψd =

Nx−n∪
m=1

{
(m− 1)Ny + 3− d, · · · ,mNy

}
d = 1, · · · , Ny − 1,

(15)

J (n) =
[
u
(n)
1 , · · · , u(n)

Ny
, v

(n)
1 , · · · , v(n)Ny−1

]T
. (16)

By using (9), (11) and matrix transformations, we can
have,

T∗(C) = [Z1,Z2]

[
J
J̄

]
= Z1J +Z2J̄ . (17)

3J̄ denotes the conjugate of J . CA,: and C:,B denote the columns and
rows of matrix C indexed by sets A and B, respectively.

Denoting Y = T∗(C), we finally can have,[
R(Y )
I(Y )

]
︸ ︷︷ ︸

Yr

=

[
R(Z1 +Z2) I(Z2 −Z1)
I(Z1 +Z2) R(Z1 −Z2)

]
︸ ︷︷ ︸

Zr

[
R(J)
I(J)

]
︸ ︷︷ ︸

Jr

, (18)

where R(•) and I(•) stand for the real and the imaginary
parts of a complex variable, respectively. It is seen from (18)
that J can be easily obtained from Jr = Z†

rYr where † is the
pseudo-inverse operator, i.e., T(û, v̂) is also estimated. This
closed-form solution has the same precision as using CVX to
solve (8) but enjoys a much smaller computational cost.

When the estimate T(û, v̂) is determined, the DOAs can
be retrieved by the generalized Vandermonde decomposition
theorem, recently proposed by Yang [10]. In particular, based
on the theorem, T(û, v̂) can be decomposed as equation (5),
i.e., the DOAs and signal powers are determined simultane-
ously.

The problem of source enumeration is also an interesting
topic and often a prerequisite for DOA estimation. Existing
methods such as Akaikes information criterion (AIC), mini-
mum description length (MDL) [13], and second order statis-
tic of eigenvalues (SORTE) [14] are developed based on the
covariance matrix. These methods perform well in the URA
case but may fail in the SRA case. The reason for this is that
the signal subspace expands into the noise subspace in this
case. Our method is essentially proposed to reconstruct the
covariance matrix of the coarray of the original array. Hence,
by simply replacing the sample covariance matrix employed
in AIC, MDL and SORTE with T(û, v̂), their maximum num-
ber of detectable signals can be enlarged. In other words, our
method is able to increase the effective aperture size in the
case of SRA. In addition, the success rate of source number
detection can also be improved compared to most of the orig-
inal detection methods, which will be investigated in simula-
tions.

4. NUMERICAL RESULTS

In this section, we evaluate the performance of our method
via numerical simulations with comparison to 2-D ESPRIT
and 2-D MUSIC.4 In our simulations, we consider two array
geometries: a 4×4-element URA and an L-shaped array con-
sisting of two orthogonal 4-element ULAs.

We assume four signals impinge onto the URA from
α = [α1, α2, α3, α4] = [−15◦,−25◦,−20◦, 0◦] and β =
[β1, β2, β3, β4] = [10◦, 0◦, 30◦, 5◦]. The SNR is fixed at
0dB and 100 snapshots are collected. We compare the DOA
estimates of our method and 2-D ESPRIT based on 500 inde-
pendent trials in Fig. 2. Black circles denote the true DOAs
and different colored dots denote the estimated ones with
respect to different DOAs. We can conclude from the scatter-
gram in Fig. 2(a) that these four DOAs are clearly detected,
while 2-D ESPRIT almost fails to separate these signals. In
particular, our method outperforms 2-D ESPRIT in view of

4Since 2-D MUSIC requires 2-D searching which is time-consuming for
simulation, we only consider 2-D ESPRIT in estimation performance com-
parison. When the detection performance is evaluated, we only employ the
2-D MUSIC for comparison since 2-D ESPRIT is unapplicable for the SRA.

3168



−30 −25 −20 −15 −10 −5 0 5
−5

0

5

10

15

20

25

30

35

α(Deg.)

β(
D

eg
.)

(a) Proposed

−30 −25 −20 −15 −10 −5 0 5
−10

−5

0

5

10

15

20

25

30

35

α(Deg.)

β(
D

eg
.)

(b) 2-D ESPRIT

Fig. 2. 2-D DOA estimates scattergrams of our method and
2-D ESPRIT.
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Fig. 3. Performance comparison of our method and 2-D ES-
PRIT.
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Fig. 4. 2-D DOA estimates contour of our method and 2-D
MUSIC.

two observations. First, the boundary of the scattergram in
Fig. 2(a) is clearer than that in Fig. 2(b). Second, there exists
a leakage between the scattergrams of the DOAs in Fig. 2(b),
which is not observed in Fig. 2(a).

Next, we compare the estimation performance of the pro-
posed method and 2-D ESPRIT with respect to different S-
NRs. We assume four signals impinge onto the URA from
α = [10◦,−20◦, 30◦, 0◦] and β = [−50◦,−30◦,−20◦, 0◦].
The RMSEs of our method and 2-D ESPRIT with respect toα
and β are compared in Fig. 3 with SNR varying from −25dB
to 25dB. The number of collected snapshots is set to 100. We
can see that the RMSEs of our method with respect to both α
and β are lower than that of 2-D ESPRIT in most cases of the
compared SNR range. In particular, when SNR≥ −10dB, al-
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Fig. 5. Detection performance comparison of AIC(+),
MDL(+) and SORTE(+).

though the difference between 2-D ESPRIT and the proposed
method with respect to α becomes smaller, the gap between
the two methods with respect to β is still large.

Then, we compare the detection performance of our
method and 2-D MUSIC with the L-shaped array. As-
sume six independent narrowband signals impinge onto
the array from α = [−40◦, 0◦, 0◦,−40◦, 40◦, 40◦] and
β = [0◦, 40◦, 0◦,−40◦,−40◦, 40◦]. We employ 400 snap-
shots and set SNR= 10dB. We plot the contours of the 2-D
DOA estimates of our method and 2-D MUSIC in Fig. 4,
from which it is obvious that our method is able to locate all
the six signals correctly while 2-D MUSIC fails. Note that,
although several sources have the same azimuth or elevation
angles, our method is immune to the angle ambiguity effect.

Finally, we carry out simulation to show the detection
performance of our DOA estimator. The original AIC,
MDL and SORTE methods employ R̂Ω when detecting
the source number while our modified ones employ T (û)
and the corresponding methods are denoted as AIC+, MDL+
and SORTE+, respectively. Fig. 5 shows the detection per-
formance of AIC+, MDL+ and SORTE+ with SNR varying
from −20dB to 20dB. We can see that SORTE has a better
detection performance when our method is employed; the
performance of AIC+ increases more than 10% percent com-
pared to AIC when SNR≥ −5dB; the performance of MDL+
is comparable to that of MDL. Overall, our method enhances
the performance of the source enumeration methods with
only a little computational cost added.

5. CONCLUSION

A computationally efficient method for 2-D DOA estimation
has been proposed in this paper. Our method can be applied to
the SRAs with arbitrary geometries and is of high estimation
accuracy. The azimuth and elevation angles have been paired
automatically. Moreover, the proposed method is immune to
the angle ambiguity effect and able to locate more sources
than conventional subspace-based methods.
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