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ABSTRACT

The Radio Frequency Identification (RFID) is a rapidly de-
veloping technology with growing applications in several
fields. One of the key applications is the localisation of
tagged objects using signal phase difference information via
dual-frequency technology. In this application, unwrapping
signal phases to acquire the range between the reader and
RFID tag is the major issue that has typically been addressed
in the literature using either the Chinese Remainder Theo-
rem or Lattice Theory. In this paper, a lattice-based method
robust to phase measurement noise is presented to resolve
the wrapped range. The proposed algorithm is shown to be
more robust and efficient than existing approaches in terms
of the reconstruction probability. Simulations are presented
to illustrate the performance of the proposed algorithm.

Index Terms— Lattice theory, Wrapped phase, Phase
ambiguity, RFID

1. INTRODUCTION

Radio Frequency Identification (RFID) is an emerging com-
munication technology with many applications across a range
of engineering fields, such as identification, localization, and
tracking[1, 2, 3, 4]. RFID involves transmission of radio sig-
nals to communicate data between the reader and electronic
tags attached to objects. RFID is becoming one of the primary
approaches to localization because of its remote operation ca-
pability, low cost, simple structure, and high accuracy.

The RFID with dual-frequency technology measures the
phase difference of arrival to obtain the time-of-flight of the
round trip signal. This requires small bandwidth to obtain the
range between the tag and reader with high accuracy [5, 6, 7].
In considering real applications, where the signal wavelength
is much less than the actual range to be measured, the phase
difference measurement is wrapped by 2π, in other words, the
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“measured” range from the reader to RFID tag is folded by
an integer multiple of the signal wavelengths. Such a phase
ambiguity problem can be efficiently addressed by either a
closed-form algorithm using the Chinese Remainder Theo-
rem (CRT) [8, 9] or a lattice-based algorithm [10, 11, 12].

In the lattice-based approach, the problem is formulated
as a state estimation problem, requiring simultaneous esti-
mation of the wrapped signal phase and the unknown integer
for the number of times that the range is folded by the signal
wavelength. Practically, if the unknown integer is estimated
incorrectly, the range estimation error is significantly large.
As a result, the reconstruction probability of the wrapped in-
teger becomes the key measure of algorithm capability for
resolving ambiguity.

In this paper, we propose an improved lattice-based al-
gorithm for the RFID localization problem that uses dual-
frequency RFID tags. We show analytically that the proposed
algorithm has better performance in terms of reconstruction
probability than the one in [10], though with a slightly high
computational complexity.

The rest of the paper is organised as follows. In Section 2,
the RFID localization system using dual-frequency and a con-
ventional lattice-based algorithm are introduced. The pro-
posed new algorithm is presented in Section 3, together with
an analysis of it. The computer simulations to highlight the
performance of the proposed methods are presented in Sec-
tion 5. Finally, we give a conclusion in Section 6.

2. FORMULATION OF DUAL-FRQUENCY RFID
RANGING

Consider a pure sine wave signal of dual-frequency, f0, f1

with f1 > f0, transmitted by an RFID reader to communi-
cate with an RFID tag. In the ideal case, the received signal
is defined by [5], i.e. si(t) = ai exp(−jφi)s(t), i = 0, 1,
where ai is amplitude, s(t) is the transmitted signal and φi is
the noise-free phase measured at the transmitter.

Let r0 be the distance between the transmitter and tag,
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then the phase, φi, i = 0, 1, can be written as φi = 2 2πfir0
c ,

where c is the speed-of-light and the constant 2 is because of
the round trip of the signal. The observed phase difference
without noise is defined as φ(true)

0,1 = φ1 − φ0. Then φ(true)
0,1

can be written into following form corresponding to the fre-
quency difference f0,1 = f1 − f0,

φ
(true)
0,1 = 2

2πf0,1r0

c
⇒ r0 =

cφ
(true)
0,1

4πf0,1
⇒ r0 =

1

2
φ

(true)
0,1 λ0,1

where λ0,1 = c/(2πf0,1). The technique is illustrated in Fig.
1.
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Fig. 1: The illustration of the dual-frequency RFID system

Since normally the λ0,1 is not large enough to cover the
possible range of values of r0, then φ(true)

0,1 is wrapped, so that
we have

r0 =
1

2

(
n0,1λ0,1 + φ

(true)
0,1 λ0,1

)
(1)

where n0,1 is an unknown integer.
Since (1) is a Diophantine equation for r0, we need mul-

tiple measurements in different pairs of dual-frequency to de-
termine the unknown integer n0,1, and we assume that the
RFID reader in question supports this operation. Let f0 be
the reference frequency then, for m frequency pairs, we have,

r , 2r0 = n0,iλ0,i + φ
(true)
0,i λ0,i (i = 1, · · · ,m) (2)

where ni,0 is unknown integer and λ0,i =
c

2π(fi−f0) , f0 < fi.
To guarantee that it is possible to solve this system of
equations uniquely for r , 2r0, we assume that r <
LCM(λ0,1, · · · , λ0,m), where LCM(·) is the least common
multiple function.

In practice, the measurement is corrupted by noise, then
we define the noisy measurement by φ0,i = φ

(true)
0,i + ω′0,i,

where ω′0,i ∼ N (0, δ2) is the observation noise.
Thus (2) can be written into

r̃ = n0,1λ0,i + y0,i (i = 1, · · · ,m) (3)

where r̃ is possible value of r, y0,i = (φ
(true)
0,i +ω′0,i)λ0,i. Let

ω0,i = ω′0,iλ0,i, then it is easy to find that ω0,i ∼ N (0, λ2
i δ

2).
Therefore, our job is to estimate r using (3).

We write the noise terms of Equation (3) in vector form
ω ∼ N (0,C), where ω = [ω0,1, · · · , ω0,m], 0 = [0, · · · , 0],
C = diag{λ2

0,1δ
2, · · · , λ2

0,mδ
2}. Let y = [y0,1, · · · , y0,m],

n = [n0,1, · · · , n0,m], λ = [λ0,1, · · · , λ0,m]. Then the likeli-
hood p(y|n, r) is proportional to

−
(
r1− n · λ− y)C−1(r1− n · λ− y

)T

where 1
∆
= [1, · · · , 1] and (·) is the dot product.

The maximum likelihood solution is given by

(r̂, N̂) = arg min
(r,n)∈R×Zm

‖rλ̄− n− ȳ‖, (4)

where λ̄ ∆
= [1/λ0,1, · · · , 1/λ0,m],

ȳ
∆
= [y0,1/λ0,1, · · · , y0,m/λ0,m] and N̂ = [N̂0,1, · · · , N̂0,m]

is the estimate of ground truth N = [N0,1, · · · , N0,m]. Esti-
mating either N or r solves the (4).

Before solving (4), we define two matrices:

A(x1, · · · , xm) =


∏m−1
i=1 xi . . . 0 0

...
. . .

...
...

0 . . .
∏m−1
i=1 xi 0

−
∏m

i=1 xi

x1
. . . −

∏m
i=1 xi

xm−1
0


(5)

and,

B(x1, · · · , xm) = diag

({∏m−1
i=1 xi
x1

, · · · ,
∏m−1
i=1 xi
xm−1

, 0

})
(6)

Obviously, A(x1, · · · , xm) and B(x1, · · · , xm) are multi-
variate functions of (x1, · · · , xm).

Suppose that λ0,1, · · · , λ0,m are co-prime, then (4) can be
converted [10] into

N̂ = arg min
n∈Zm

∥∥∥nB(λ0,1, · · · , λ0,m) + ȳA(λ0,1, · · · , λ0,m)
∥∥∥.

(7)

Formula (7) is typically the closest point searching prob-
lem in lattices and can be solved via Babai’s algorithm ef-
ficiently [10, 13] if the wavelengths are co-prime. It only
needs m times computations. This algorithm is referred as
the conventional lattice algorithm in this paper.

3. IMPROVEMENT OVER THE CONVENTIONAL
LATTICE ALGORITHM

Define λ = [λ0,1, · · · , λ0,m], and assume that λ0,1 < · · · <
λ0,m and that [λ0,1, · · · , λ0,m] are co-prime. As in [10], when
the variance of the measurement noise is proportional to the
wavelength, the probability of correct reconstruction of the
integer vector N, Pr(N̂ = N), is largely impacted by the
minimum wavelength in the set [λ0,1, · · · , λ0,m].

We define the circular shift function S(·, ·) of an array as

S(λ, 0) = [λ0,1, · · · , λ0,m]

S(λ, 1) = [λ0,m, λ0,1, · · · , λ0,m−1]

...
S(λ,m− 1) = [λ0,2, λ0,3, λ0,4, · · · , λ0,m, λ0,1]
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Accordingly, recalling the definition of A(·) and B(·) in (5)
and (6), we let Aj , A(S(λ, j)),Bj , B(S(λ, j)), j =
0, 1, · · · ,m− 1.

As shown in Lemma 1, in the conventional lattice algo-
rithm, the use of different basis Aj , j = 0, · · · ,m−1 implies

different reconstruction probability Pr
(
N̂ = N|S(λ, j)

)
.

Lemma 1 Define λ = [λ0,1, · · · , λ0,m]. Suppose λ0,1 <
· · · < λ0,m and are co-prime. Then the probabilities of cor-
rect reconstruction of the integer set N using the conventional
lattice algorithm[10] satisfies Pr

(
N̂ = N|S(λ, 0)

)
>

Pr
(
N̂ = N|S(λ, j)

)
, j = 1, · · · ,m− 1.

Proof 1 We only prove the case Pr
(
N̂ = N|S(λ, 0)

)
>

Pr
(
N̂ = N|S(λ, 1)

)
. The proofs of other cases are similar.

As indicated in [10], for S(λ, 0), the lattice algorithm will
return the true value if |ω0,i−ω0,m| < 1

2 for i = 1, · · · ,m−1,
and this yields

Pr
(
N̂ = N|S(λ, 0)

)
= Pr

(
∩m−1
i=1 |ω0,i − ω0,m| < 1/2

)
Similarly, for S(λ, 1), we have

Pr
(
N̂ = N|S(λ, 0)

)
= Pr

(
∩i∈{1,··· ,m}\{m−1} |ω0,i − ω0,m−1| < 1/2

)
(8)

Since ω0,i ∼ N (0, δ2λ2
0,i), i = 1, · · · ,m, indicating that

the variance of ω0,i is proportional to the value of wave-
lengths λ0,i, it is not hard to see that

Pr
(
N̂ = N|S(λ, 0)

)
> Pr

(
N̂ = N|S(λ, 1)

)
(9)

The result in Lemma 1 is from a statistical perspective.
However, in each realization, it is possible that the conven-
tional lattice algorithm may return wrong estimation of N us-
ing A0 while the algorithm returns correct estimation using
Aj , j = 1, · · · ,m − 1. Thus it is useful to draw information
not only from A0, as used in conventional lattice algorithm in
[10], but also from Aj , j = 1, · · · ,m− 1 before a decision is
made. Based on the above idea, we present following estima-
tor. The performance of the estimator is analysed in the next
section.

N̂ =N̂j0 (10)

s.t. j0 =arg min
j=0,··· ,m−1

∣∣∣E [(ˆ̂rj − r̂j) · λ̄j
]∣∣∣

N̂j =arg min
n∈Zm

‖nBj + ȳiAj‖, j = 0, · · · ,m− 1

r̂j =N̂jλ+ yj

ˆ̂rj =E [r|r̂j ]

where E[·] is the arithmetic mean operator, λ̄j , S(λ̄, j),
yj , S(y, j), ȳj = S(ȳ, j), and ˆ̂rj = E [r|r̂j ] is the optimal
estimator of r given r̂j , as can be found in [10].

It is not hard to solve (10). One could first solve N̂j , j =
0, · · · ,m − 1 according to Aj = A(S(λ, j)) using the con-
ventional lattice algorithm, and then compute the r̂j . After
calculating N̂j and r̂j for all j, the estimation of N̂ is easy to

find by computing
∣∣∣E [(ˆ̂rj − r̂j) · λ̄j

]∣∣∣.
The algorithm can be divided into two parts: the off-line

part and the on-line part. The matrices used are constructed
and stored in memory in the off-line part. In the on-line part,
the unknown range is estimated using measurements and the
stored matrices. The algorithm is set out as Algorithm 1.

Algorithm 1: Proposed algorithm to find N̂ with differ-
ent constructions of Aj

Data: λ = [λ0,1, · · · , λ0,m],
λ0,1 < · · · < λ0,m, {λ0,1, · · · , λ0,m} are co-prime,
y = [y0,1, · · · , y0,m]

Result: Estimation of N, i.e. N̂
1 Off-line part:
2 for j = 0 : m− 1 do
3 Aj = A(S(λ, j));
4 Compute Bj and other associated matrices;

5 On-line part:
6 ȳ = [y0,1/λ0,1, · · · , y0,m/λ0,m];
7 for j = 0 : m− 1 do
8 yj = S(y, j), ȳj = S(ȳ, j);
9 Calculate N̂j using the conventional lattice

algorithm with data ȳjAj , Bj and other
associated matrix;

10 ˆ̂rj = E [r|r̂j ], Objj =
∣∣∣E [(ˆ̂rj − r̂j) · λ̄j

]∣∣∣;
11 j0 = argminj=0,··· ,m−1 Objj ;
12 return N̂ = N̂j0

4. THE COMPUTATIONAL COMPLEXITY AND
PERFORMANCE ANALYSIS

In this section, we aim to analyse the algorithm described in
Algorithm 1 in terms of computational complexity and re-
construction performance. The computational complexity is
measured by the required on-line computation time, while the
reconstruction performance is measured by the probability of
correct reconstruction of N; that is, Pr(N̂ = N).

The required on-line computation has two parts, 1) the
processes to calculate the candidate estimations, i.e. N̂j , j =
0, · · · ,m−1, and 2) the outer loop from 0 tom−1. Since, for
each j, the first part needs m times computations and there-
fore, the total computation complexity is m ·m = m2.
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Since the performance of the proposed algorithm is
measured by Pr(N̂ = N), as indicated in the algorithm,
N̂ = N happens if and only if there exists at least one
j0 ∈ [0, · · · ,m− 1] such that following event happens

{N̂j0 = N} ∩ {j0 = arg min
j=0,··· ,m−1

Objj}, (11)

where Objj =
∣∣∣E [(ˆ̂rj − r̂j) · λ̄j

]∣∣∣. Therefore,

Pr
(
N̂ = N

)
=Pr

(
{N̂j0 = N} ∩ {j0 = arg min

j=0,··· ,m−1
Objj}

)
=Pr

(
j0 = arg min

j=0,··· ,m−1
Objj

∣∣∣N̂j0 = N

)
Pr
(
N̂j0 = N

)
Since, when N̂j0 = N, we have ˆ̂rj0 ' r,

(ˆ̂rj0 − r̂j0) · λ̄j0 '(r − r̂j0) · λ̄j0 = ωj0 · λ̄j0 ,

where ωj0 , S(ω, j0).
According to the definition of ωj and λ̄j0 , we know that

ωj0 · λ̄j0 ∼ N (0, δ2Im)

where Im is the m-dimensional identity matrix.
If N̂j0 = N, then

∣∣∣E [(ˆ̂rj0 − r̂j0) · λ̄j0
]∣∣∣ ' 0, and it will

normally include the minimum value for j = 0, · · · ,m− 1 if
m is large. This implies that

Pr

(
j0 = arg min

j=0,··· ,m−1
Objj

∣∣∣N̂j0 = N

)
'Pr

(
j0 = arg min

j=0,··· ,m−1
Objj

∣∣∣N̂j0 = N,Objj0 = 0

)
=1

It follows that Pr
(
N̂ = N

)
' Pr

(
N̂j0 = N

)
. Define

the event E , {N̂j0 = N,∃j0 ∈ {0, · · · ,m − 1}}, then Ec
states that {N̂j 6= N,∀j = 0, · · · ,m− 1}. In consequence,

Pr(E) = 1− Pr(Ec) =1− Pr
(
∩m−1
j=0 {N̂j 6= N}

)
>1− Pr

(
N̂j 6= N

)
=Pr

(
N̂j = N

)
∀j = 0, · · · ,m− 1

By Lemma 1, this implies that the proposed algorithm is more
robust than the conventional lattice algorithm in terms of the
probability of correct reconstruction.

5. SIMULATION

The RFID ranging performance using the proposed algorithm
listed in Algorithm 1 is demonstrated using Monte Carlo sim-
ulations. We take the US UHF band, 902 ∼ 928 MHz, as

an example. The frequency 902 MHz is selected as the ref-
erence frequency; that is, f0 = 902 MHz, and therefore, the
available frequency differences are within 1 ∼ 26 MHz with
1MHz increment[5] and wavelengths are within 300 ∼ 12
m. In the simulation, the following co-prime wavelengths are
selected λ = [21, 19, 17, 13]m.

The distance r is randomly selected between 0 and the
LCM of all used wavelengths. The parameter δ in the mea-
surement noise variance δ2λ2

i is chosen so that−20 log10 δ =
34 : 2 : 50, which provides an indication for both noise level
and signal-to-noise ratio in the simulation. All simulation re-
sults illustrated are averaged over 5000 Monte Carlo runs.
The algorithm performance is evaluated in terms of the re-
construction probability Pr(N = N̂) versus the phase mea-
surement noise level.

The simulation results are shown in Figure 2. For a com-
parison, the performance of the conventional lattice algorithm
using the lattice basis A0 is presented as well. As indicated in
Lemma 1, the reconstruction probability of the conventional
lattice algorithm satisfies Pr(N̂ = N|S(λ, 0)) > Pr(N̂ =
N|S(λ, j)), j = 1, · · · ,m − 1 and S(λ, 0) corresponds to
the lattice basis A0. Thus it is sufficient to compare the per-
formance of the new algorithm and conventional lattice algo-
rithm using the lattice basis A0.
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Fig. 2: The reconstruction probability comparison between the conventional lattice [10]
algorithm and proposed algorithm in Section 3.

Figure 2 shows that the proposed algorithm outperforms
the conventional lattice algorithm in that it has a high proba-
bility of correct reconstruction for a given noise level.

6. CONCLUSIONS

In this work, we have presented an improved lattice algorithm
for estimating the distance between a RFID reader and a tag
using multiple pairs of dual frequencies. The proposed algo-
rithm is more robust than the conventional lattice algorithm
in terms of the probability of correct reconstruction of the
wrapped integers at the cost of only slightly higher complex-
ity. The performance of the proposed algorithm is analysed.
This algorithm is suitable for other situations when wrapped
measurements arise.
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