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ABSTRACT

This paper addresses the problem of localizing an unknown num-

ber of static sources emitting unknown signals from time-difference

of arrival (TDOA) measurements. Based on the framework of ran-

dom finite sets and finite set statistics, we formulate the Bayesian

estimation problem and develop a particle-based localization algo-

rithm that overcomes the challenges related to the highly non-linear

TDOA measurement model, the data associations uncertainty, and

the uncertainty in the number of sources to be localized. Simula-

tion results confirm that the number of sources can be determined

correctly and accurate location estimates can be obtained when the

number of false alarms is low and the probability of detection is high.

Index Terms— Time-difference of arrival, random finite sets,

multiobject estimation, finite set statistics, sequential Monte Carlo

techniques.

1. INTRODUCTION

We address the problem of localizing multiple sources from their

electromagnetic or acoustic signals, when the absolute time of trans-

mission is unknown. The proposed approach uses time-difference

of arrival (TDOA) location information [1] related to peaks in the

cross-correlation function of multiple spatially separated receivers.

TDOA-based localization has wide applications in wireless com-

munication [2–5] and passive surveillance systems [6–9] and is

potentially more accurate compared to traditional triangulation ap-

proaches that use angular measurements.

1.1. TDOA Location Information and Random Finite Sets

Fig. 1 shows the hyperbolic TDOA location information for three

non-cooperative sources provided by a synchronized cooperative re-

ceiver pair. Hyperbolic TDOA location information related to dif-

ferent receiver pairs is expected to intersect in the vicinity of true

source locations. Localization of multiple sources is complicated by

data association uncertainty, i.e., it is not known which TDOA mea-

surement is associated to a specific source. In addition, due to fading

in the propagation path, the signal of certain sources might be miss-

ing at some receivers or false TDOA measurements which are not

related to a source might be erroneously extracted. These two effects

are typically referred to as missed detection and false alarms, respec-

tively. Thus, the number of extracted TDOA measurements might be

different among receiver pairs. Furthermore, the number of sources

to be localized is unknown. Traditional methods for TDOA-based
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Fig. 1. The hyperbolic functions related to TDOA measurements of

two receivers (indicated by circles) for three sources (indicated by

crosses) for different noise realizations.

localization (see [1,9,10] and references therein) typically assume a

single source and do not consider missed detections and false alarms.

For the estimation of an unknown number of objects in the

presence of data association uncertainty, random finite sets (RFSs)

and finite set statistics (FISST) offer attractive solutions [11]. Tech-

niques for tracking an unknown number of objects based on the

FISST framework include the probability hypothesis density (PHD)

filter [11–13], the cardinalized PHD filter [11, 14, 15], (labeled)

multi-Bernoulli filters [11, 16, 17], and the recently proposed track-

oriented marginal multi-Bernoulli/Poisson (TOMB/P) filter [18,19].

The TOMB/P uses a hybrid Bernoulli/Poisson RFS model and pro-

vides an accurate approximation of the full Bayesian RFS filter.

1.2. Contribution and Paper Organization

In this paper, we state the Bayesian estimation problem for the

TDOA-based localization of an unknown number of static sources.

Based on the hybrid Bernoulli/Poisson model introduced in the

TOMB/P filter [18, 19], we develop a particle-based localization

algorithm that overcomes the challenges related to the highly non-

linear TDOA measurement model, the data associations uncertainty,

and the uncertainty in the number of sources to be localized. Simu-

lation results confirm that the number of sources can be determined

correctly and accurate location estimates can be obtained when the

number of false alarms is low and the probability of detection is

high.

This paper is organized as follows. The basics of RFSs are re-

viewed in Section 2. The system model is described in Section 3.

In Section 4 the RFS based estimation problem is formulated and

the proposed method is presented. Simulation results are reported in

Section 5.
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2. RFS BASICS

A random quantity X whose realizations X = {x(1), . . . , x(n)} are

finite sets of nx-dimensional vectors x
(1), . . . ,x(n) ∈ R

nx is re-

ferred to as a RFS. Both the number n = |X |, n ∈ N0 of vectors

in the set (the cardinality of X ) and the vectors x(i) are chosen ran-

domly. Thus, X consists of a random number n = |X| of random

vectors x
(1), . . . , x(n). For the case of zero cardinality (n = 0),

we have X = ∅. Note that the elements x
(1), . . . ,x(n) of a set

X = {x(1), . . . ,x(n)} are unordered.

Adopting the FISST framework [11], the statistics of a RFS

X can be described by the multiobject probability density function

(pdf) fX(X ) that is briefly denoted f(X ). For any realization X =

{x(1), . . . ,x(n)}, f(X ) can be evaluated as

f(X ) = n! ρ(n)fn(x
(1), . . . ,x(n)) , (1)

where, ρ(n) , Pr{|X| = n} is the probability mass function of

the random cardinality n—termed the cardinality distribution—and

fn(x
(1), . . . ,x(n)) is a pdf of n random vectors x

(1), . . . , x(n) that

is symmetric, i.e., invariant to argument permutation. For the case of

zero cardinality, f(∅) = ρ(0).
Next, we review three types of RFSs that are relevant for the pro-

posed estimation scheme. The Poisson RFS X has a cardinality that

follows a Poisson distribution with mean µ, i.e., ρ(n) = e−µµn/n! ,
n ∈ N0. (Note that a Poisson distribution is fully characterized by

its means which is at the same time its variance.) For any n, the

elements of a Poisson RFS x
(1), . . . , x(n) of X are independent and

identically distributed (iid) according to its “spatial pdf” f(x), i.e.,

fn(x
(1), . . . ,x(n)) =

∏n

i=1 f(x
(i)). From (1), the multiobject pdf

can thus be obtained as

f(X ) = e−µ
∏

x∈X

µf(x) .

The product µf(x) is referred to as intensity function or PHD and

fully characterizes a Poisson RFS.

A Bernoulli RFS X with probability of existence r and spatial

pdf f(x) is empty with probability 1 − r and contains one element

x ∼ f(x) with probability r. Hence, the multiobject pdf is

f(X ) =







1−r, X = ∅,
rf(x) , X ={x},
0, otherwise.

A multi-Bernoulli RFS X is the union of independent Bernoulli RFSs

X(j), j ∈ {1, . . . , J} with existence probabilities r(j) and spatial

pdfs f (j)(x), i.e., X =
⋃J

j=1 X
(j). Every Bernoulli RFSs X(j),

j ∈ {1, . . . , J} is referred to as a component of X. The multiob-

ject pdf f(X ) of the multi-Bernoulli RFS X is parametrized by r(j)

and f (j)(x), j ∈ {1, . . . , J} and can be obtained using FISST con-

volution. For an union of two RFS, i.e., X = X1 ∪ X2 calculating

the multiobject pdf f(X ) by means of FISST convolution is defined

as [11, 18]

fX(X ) =
∑

Y⊆X

fX1
(Y)fX2

(X \Y) . (2)

3. SYSTEM MODEL

Consider the localization of multiple passive sources using nr re-

ceivers in 2D in known locations q
(k) = [q

(k)
x q

(k)
y ]T. The number

of sources nt and their unknown locations p
(j) = [p

(j)
x p

(j)
y ]T are

random and can be denoted consistently using a RFS P. Receivers

can exchange their received signals and are perfectly synchronized.

3.1. TDOA Measurements

A simple way to obtain location information of non-synchronized

sources with unknown waveforms, is to compare signals at the re-

ceivers pairwise. More specifically, for each receiver pair (k, l) the

signal of receiver k and the signal of receiver l are correlated and

time delays r
(m)
kl , m = 1, . . . , nkl related to peaks in the result-

ing cross-correlation function are extracted. These time delays are

referred to as a TDOA measurements [1].

Each TDOA measurement r
(m)
kl is related to a possible source

location p
(j) along a hyperbola. For receiver pair (k, l), the random

TDOA r
(m)
kl that was originated by source j is modeled as

r
(m)
kl =

1

v

(

‖p(j) − q
(k)‖ − ‖p(j) − q

(l)‖
)

+ z
(m)
kl

= hkl(p
(j)) + z

(m)
kl , (3)

where v is the propagation speed and z
(m)
kl is the measurement noise

which is zero-mean Gaussian with variance σ2
z and statistically in-

dependent across m and (k, l) pairs. The dependence of a measured

TDOA r
(m)
kl on the location p

(j) of the generating source j is de-

scribed by the likelihood function f(r
(m)
kl |p(j)) that can be directly

obtained from (3). For receivers k, l located at q(k) = [qx, 0]
T and

q
(l) = [−qx, 0]

T, (3) reads

r
(m)
kl =

1

v

[

√

(

p
(j)
x − qx

)2
+ p

(j)2
y −

√

(

p
(j)
x + qx

)2
+ p

(j)2
y

]

+z
(m)
kl .

(4)

Let r
(m)
kl be a measured TDOA according to (4) and let us neglect its

unknown noise realization, i.e., z
(m)
kl = 0. After some algebra, (4)

can be written in the form of a hyperbola as

p
(j)2
x

a2
−

p
(j)2
y

b2
=

p
(j)2
x

(r
(m)
kl v)2/4

−
p
(j)2
y

q2x − (r
(m)
kl v)2/4

=1.

Fig. 1 shows the related hyperbolas for three sources with locations

[0 2]T, [−1 2]T, and [−2 2]T, and different realizations of z
(m)
kl .

3.2. Multiobject Likelihood Function and Prior Distribution

The nkl TDOA measurements related to receiver pair (k, l) are mod-

eled as a RFS Rkl. The probability that the source j gives rise to

a measurement r
(m)
kl is pd. Therefore, the measurement related to

source j is modeled as a Bernoulli RFS Θkl

(

p
(j)

)

with existence

probability r = pd and spatial pdf f
(

r
(m)
kl

)

= f
(

r
(m)
kl

∣

∣p
(j)

)

. This

leads to the following RFS likelihood function related to source j,

f
(

Rkl

∣

∣p
(j)) =















1−pd, Rkl= ∅,

pd f
(

r
(m)
kl

∣

∣p
(j)

)

, Rkl=
{

r
(m)
kl

}

,

0, otherwise.

We adopt the standard assumption, that a measurement r
(m)
kl cannot

originate from more than one source simultaneously, and one source

can generate at most one measurement r
(m)
kl at each receiver pair

[11, 20]. Thus, all source-originated measurements form the multi-

Bernoulli RFS
⋃nt

j=1 Θkl

(

p
(j)

)

.

Following [11,20], it is assumed that the number of false alarms

at receiver pair (k, l) is Poisson distributed with mean µ. Further-

more, at each receiver pair (k, l), the false alarms denoted by Kkl
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are assumed to be independent of the source-originated measure-

ments and independent and identically distributed (iid) according

to the spatial pdf fc(r
(m)
kl ). Assuming that each measurement r

(m)
kl

originates either from a source or is a false alarm, the overall mea-

surement RFS at receiver pair (k, l), Rkl, is then obtained as

Rkl =

nt
⋃

j=1

Θkl

(

p
(j)) ∪ Kkl . (5)

The dependence of the overall measurement RFS Rkl on the over-

all source location RFS P, is described by the multiobject likelihood

function f(Rkl|P), which can be obtain from (5) using FISST con-

volution (cf. (2)). Let every receiver pair be one of ns =
(

nr

2

)

sen-

sors s with corresponding receiver indexes (ks, ls) and let R1:ns ,
(

Rk1 l1 , . . . , Rkns lns

)

be an ordered list of single sensor measure-

ments. The all-sensor likelihood function then reads

f(R1:ns |P) =

ns
∏

s=1

f(Rksls |P).

The prior pdf of P, f(P), is modeled as a Poisson RFS with

mean parameter µp and a spatial pdf fp(p) that is chosen uniform on

the 2D region of interest.

4. MULTIOBJECT ESTIMATION

In a Bayesian RFS setting, multiobject estimation relies on the

marginal posterior pdf f(P|R1:ns) after making the measurements

R1:ns , (Rk1l1 , . . . , Rkns lns
). In our approach, this pdf is cal-

culated by performing an update step for each sensor recursively,

i.e., a single sensor update step is performed ns times. At recur-

sion s, f(P|R1:s−1) is transformed into f(P|R1:s). (Note that

f(P|R1:1) , f(P|R1) and f(P|R1:0) , f(P)). We denote by Ps

the RFS related to the pdf f(P|R1:s).
Following [18] all updated multiobject state RFS Ps are mod-

eled as the union of independent RFSs Pu
s and Pd

s, i.e., Ps = Pu
s ∪

Pd
s, describing the undetected and detected sources, respectively.

Let f u
s(P) be the pdf of Pu

s (note that Pu
s is independent of R1:s

but not of s) and f d(P|R1:s) be the posterior pdf related to Pd
s.

Thus, the posterior multiobject pdf f(P|R1:s) is given by the FISST

convolution (cf. (2)). Note that Pu
s is a Poisson RFS with mean

parameter µu
s, spatial pdf f u

s(p), and intensity function λu
s(p) =

µu
s f

u
s(p). Furthermore, Pd

s is a multi-Bernoulli RFS consisting of

Js Bernoulli components with existence probabilities r
(j)
s and spa-

tial pdfs f
(j)
s (p), j ∈ {1, . . . , Js}, where each Bernoulli component

represents a potential source and its location. For s = 0, we have

λu
0 = µpfp(p) and J0 = 0.

4.1. Single Sensor Update

The intensity function λu
s(p) related to the Poisson pdf f u

s(P) at

recursion s, can be calculated directly from λu
s−1(p) as

λu
s(p) = (1−pD)λ

u
s−1(p) .

However, the update step for the detected sources yields a weighted

mixture of multi-Bernoulli pdfs with a number of components that

grow exponentially in the number of sensors ns. To obtain an

approximation f̃ d(P|R1:s) for f d(P|R1:s) that is still a multi-

Bernoulli RFS and to avoid an exponential scaling of the compu-

tational complexity in the number of sensors ns, an approximation

presented in the context of multiobject tracking [18] was adopted.

The approximated multi-Bernoulli pdf f̃ d(P|R1:s) is char-

acterized by existence probabilities r
(j)
s and spatial pdfs f

(j)
s (p)

related to the Bernoulli components f
(j)
s (P), j ∈ {1, . . . , Js}.

Therefore, the update step amounts to calculating these quan-

tities from λu
s−1(p), r

(j)
s−1 and f

(j)
s−1(p), j ∈ {1, . . . , Js−1}.

Note that the number of Bernoulli components in f̃ d(P|R1:s) is

Js = Js−1 + nks ls , consisting of one “legacy” Bernoulli com-

ponent j ∈ {1, . . . , Js−1} for each component in f̃ d(P|R1:s−1)
and one new component j ∈ {Js−1 + 1, . . . , Js−1 + nksls} for

each of the nks ls measurements r
(m)
kl , m ∈ {1, . . . , nksls}. The

calculations of updated Bernoulli components is based on so-called

marginal association probabilities p
(j)
s (m), j ∈ {1, . . . , Js} [20].

For efficient calculation of marginal association probabilities by

means of loopy belief propagation we refer the reader to [21].

The legacy components j ∈ {1, . . . , Js−1}, can be obtained as

r(j)s = p(j)s (0)
r
(j)
s−1(1−pD)

1− r
(j)
s−1pD

+

nksls
∑

m=1

p(j)s (m),

f (j)
s (p) =

f
(j)
s−1(p)

r
(j)
s

[

p(j)s (0)
r
(j)
s−1(1−pD)

1− r
(j)
s−1pD

+

nksls
∑

m=1

p(j)s (m)
f
(

r
(m)
kl

∣

∣p

)

∫

f
(

r
(m)
kl

∣

∣p

)

f
(j)
s−1(p)dp

]

. (6)

Furthermore, the new components j = Js−1 + m with m ∈
{1, . . . , nksls}, are given by

r(j)s =
p
(j)
s (m) pD

∫

f
(

r
(m)
kl

∣

∣p

)

λu
s−1(p)dp

λc

(

r
(m)
kl

)

+ pD

∫

f
(

r
(m)
kl

∣

∣p

)

λu
s−1(p)dp

, (7)

f (j)
s (p) =

f
(

r
(m)
kl

∣

∣p

)

λu
s−1(p)

∫

f
(

r
(m)
kl

∣

∣p

)

λu
s−1(p)dp

. (8)

The expression in (6), (7), and (8) can not be evaluated in closed

form. Thus, we employ a sequential Monte Carlo implementa-

tion for approximate evaluation of (6), (7), and (8). First, the

integrals
∫

f
(

r
(m)
kl

∣

∣p

)

f
(j)
s−1(p)dp and

∫

f
(

r
(m)
kl

∣

∣p

)

λu
s−1(p)dp

are evaluated using Monte Carlo integration [22]. Next, for each

j ∈ {1, . . . , Js}, L particles and corresponding weights
{(

p
(j,l)
s ,

w
(j,l)
s

)}L

l=1
representing f

(j)
s (p) are calculated by means of im-

portance sampling [22] using as proposal pdf f
(j)
s−1(p) in (6) and

f u
s−1(p) in (8), respectively. A particle-based calculation of the

marginal association probabilities p
(j)
s (m), j ∈ {1, . . . , Js} is

presented in [19].

4.2. Detection and Estimation

The Bernoulli component j in f̃ d(P|R1:ns) is considered to exist if

r
(j)
ns > 0.5. For each component j that is considered to exist, an

estimate of the source location p
(j) can then be calculated as

p̂
(j)

,

L
∑

l=1

p
(j,l)
ns

w(j,l)
ns

.

The entirety of all n̂t detected location estimates p̂(j) forms the esti-

mated set P̂ = {p̂(1), . . . , p̂n̂t)}.
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Fig. 2. Particle-based representation of the spatial pdfs related to the three Bernoulli components with the highest existence probabilities in

fd(P|R1:s): (a) s = 1, (b) s = 2, (c) s = 3, and (d) s = 6 = ns. The locations of receivers involved in the current update step are indicated

by dots, the locations of other receivers are indicated by circles.

5. SIMULATION RESULTS

In our simulations the sources are randomly placed on a region of

interest of [−3, 3]× [−3, 3]. The source-originated TDOAs r
(m)
kl at

receiver pair (k, l) are distributed according to (3) with a standard

deviation of σz = 0.02/v for the noise z
(m)
kl . The false alarm pdf

fFA

(

r
(m)
kl

)

at receiver pair (k, l) is uniform on ‖q(k)−q
(l)‖/v. The

receivers are located evenly on a circle of radius 3. The mean pa-

rameter of the prior pdf fp(P) was chosen as µp = 5. The number

of particles was set to L = 50 · 103.

For a single realization, Fig. 2 shows simulation results for a

scenario with nr = 4 (ns = 6 ), pD = 0.9, and µ = 1. More

specifically, Fig. 2 shows particles representing the spatial pdfs of

the three Bernoulli components with the highest existence proba-

bilities of f̃ d(P|R1) in Fig. 2(a), of f̃ d(P|R1:2) in Fig. 2(b), of

f̃ d(P|R1:3) in Fig. 2(c), and of f̃ d(P|R1:6) in Fig. 2(d), respec-

tively. A few remarks are in order:

• The first receiver pair (s = 1) has one missed detection and

no false alarm measurement (nk1l1 = 2); f̃ d(P|R1) con-

sists only J1 = 2 components. The spatial pdfs f
(1)
1 (p) and

f
(2)
1 (p) meet the true locations of two sources.

• The second receiver pair (s = 2) has no missed detection

and one false alarm measurement (nk2l2 = 4); f̃ d(P|R1:2)
consists of J2 = J1 + nk2l2 = 6 components. The two

Bernoulli components with the highest existence probabili-

ties are the legacy components that were generate from the

measurements of the first receiver pair. Their spatial pdfs

f
(1)
2 (p) and f

(2)
2 (p) have modes which correspond to the in-

tersection points of the hyperbolas related to previous mea-

surements and current measurements. The Bernoulli compo-

nent f
(3)
2 (p) with the third-highest existence probability is

related to a new measurement that does not intersect with an

existent Bernoulli component.

• The third receiver pair (s = 3) has no missed detection and

no false alarm measurement (nk3l3 = 3); f̃ d(P|R1:3) con-

sists of J3 = J2 + nk3l3 = 9 components. The spatial pdfs

f
(1)
3 (p), f

(2)
3 (p), and f

(3)
3 (p) are still multimodal but more

concentrated around the true source locations compared to the

s = 2 result.

• After the update step has been performed for all ns = 6 re-

ceiver pairs, f̃ d(P|R1:ns) consists of Jns = 20 components

and the spatial pdfs related to the three components with the

highest existence probabilities have a single mode that is well

localized around the true locations of the three sources.

(pd, µ)
nr = 4 nr = 5

ēL pC ēL pC

(.99, 0) 1.82 · 10−2 0.01 1.83 · 10−2 0.00

(.90, 0) 2.12 · 10−2 0.01 1.90 · 10−2 0.00

(.80, 0) 2.40 · 10−2 0.01 1.95 · 10−2 0.00

(.99, 1) 1.81 · 10−2 0.01 1.83 · 10−2 0.00

(.90, 1) 2.48 · 10−2 0.09 1.87 · 10−2 0.01

(.80, 1) 4.11 · 10−2 0.29 2.17 · 10−2 0.06

(.99, 2) 1.88 · 10−2 0.02 1.83 · 10−2 0.01

(.90, 2) 4.09 · 10−2 0.23 1.93 · 10−2 0.02

(.80, 2) 5.55 · 10−2 0.46 2.38 · 10−2 0.10

Table 1. Simulated mean localization error ēL and probability of

cardinality error pC for different system parameters.

To investigate how the performance of our method depends on

system parameters, we simulated scenarios with three different pD ∈
{0.99, 0.9, 0.8}, three different µ ∈ {0, 1, 2} at each receiver pair,

and two different nr ∈ {4, 5}. The performance of the proposed

method in terms of the probability of a cardinality error pC and the

mean localization error ēL is evaluated by simulations. For each re-

alization, the localization error eL is evaluated in terms of the OSPA

metric [23] with a cut-off parameter of ∞ and with the Euclidean

distance used as “inner metric.” eL only contributes to the mean lo-

calization error if the cardinality was estimated correctly.

Table 1 shows pC and ēL for different values of nr, pD, and µ.

For each possible combination of µ, pD, and nr, we performed 500
simulation runs. It can be seen that for low values of µ and high

values of pD all sources can be accurately localized. Furthermore, by

comparing the results for nr = 4 and nr = 5 it is demonstrated how

an increased number of receivers can improve both robustness of

the cardinality estimate and localization accuracy in situations with

an increased number of false alarms and a reduced probability of

detection.

6. CONCLUSION

We presented a Bayesian algorithm for localizing an unknown num-

ber of static sources from TDOA measurements. The proposed al-

gorithm is based on a recently introduced hybrid Bernoulli/Poisson

filter and is implemented using sequential Monte Carlo techniques.

Numerical results showed that for a low number of false alarms and a

high probability of detection, all sources can be accurately localized.

A possible direction for further research includes an improved ap-

proximation for the update step where data association is performed

across multiple receiver pairs [24].
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