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ABSTRACT
A cognitive radar adapts the transmit waveform in response to changes
in the radar and target environment. In this work, we analyze the
recently proposed sub-Nyquist cognitive radar wherein the total trans-
mit power in a multi-band cognitive waveform remains the same as
its full-band conventional counterpart. For such a system, we derive
lower bounds on the mean-squared-error (MSE) of a single-target
time delay estimate. We formulate a procedure to select the optimal
bands, and recommend distribution of the total power in different
bands to enhance the accuracy of delay estimation. In particular,
using Cramér-Rao bounds, we show that equi-width subbands in cog-
nitive radar always have better delay estimation than the conventional
radar. Further analysis using Ziv-Zakai bound reveals that cognitive
radar performs well in low signal-to-noise (SNR) regions.

Index Terms— cognitive radar, Cramér-Rao lower bound, Ziv-
Zakai lower bound, delay estimation, sub-Nyquist radar

1. INTRODUCTION

In recent years, cognitive radar has garnered considerable research
interest. The main advantage of such a system is its ability to learn the
target environment and then adapt both the transmit and receive pro-
cessing for an optimal performance [1]. Conventional radars can also
optimize and change their processing techniques depending on the tar-
get scene, but their adaptability is restricted to receive processing only.
Several possible radar cognition capabilities have been suggested (see
e.g. [2, 3]) where the environment specifications and corresponding
suitable adaptive behaviors vary widely. Some common examples
include introducing nulls towards the direction of clutter in the trans-
mit antenna pattern [2], transmit beam-scheduling based on previous
tracking history of the targets [4, 5], and designing transmit waveform
code that avoids interfering bands by other licensed services [6, 7].
In this work, we consider cognitive radar in the latter context where
the transmit waveform is restricted to certain frequencies of interest.

Many radar systems operate within a crowded electromagnetic
spectrum where radio-frequency (RF) interference due to communi-
cation services is increasingly common [8]. In conventional radars,
the RF interference is notched out at the receiver leading to problems
of signal distortion (see e.g. [9]). Some recent works, therefore, focus
on designing radar waveforms such that the interference within the
transmit signal spectrum is minimized [6, 10, 11]. While effective in
mitigating RF interference, such a spectral shaping of transmit signal
causes loss of signal bandwidth and radar resolution.

Recently, [12] proposed a sub-Nyquist cognitive radar (CR here-
after) where the transmit waveform is confined to a few disjoint
subbands and the receiver samples and processes only these subbands.
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This system exploits Xampling [13] that has been used for reduc-
ing the sampling rate at the receiver without sacrificing the range
resolution. Since the total transmit power remains the same as the
original full-band signal, the CR waveform has more in-band power
resulting in an increase in the receiver’s signal-to-noise ratio (SNR).
In [12], this benefit was demonstrated through software and hardware
experiments. The CR has also been realized in a hardware prototype
for a sub-Nyquist multiple-input multiple-output (MIMO) radar [14].

Prior works on CR do not study the system performance in terms
of estimation accuracy of target parameters, such as location and
velocity. For a single-antenna radar, only one dimension (range) of the
target location can be estimated. Since range is linearly proportional
to time delay, it suffices to consider only the time delay estimation
for single antenna radar. In this paper, we analyze the performance
of CR for estimating the time delay for a single target. We first
devise a procedure to select the subbands that have the minimum
spectral interference; here, the existing spectral power from other
services at each frequency, i.e., the radar environment map (REM) is
considered known. Once the subbands are selected for CR, we derive
lower bounds on mean-squared-error (MSE) in order to recommend
a way to redistribute the total power among chosen bands so that the
accuracy in time delay estimation is enhanced. Our work has several
advantages: the CR transmission minimizes the spectral interference,
delay estimation accuracy is enhanced by optimal distribution of
power, the range resolution is not lost while sampling at a low rate,
and a small portion of the available bandwidth is used.

Lower bounds on estimation errors are useful for evaluating per-
formance [15]. A common bound is the Cramér-Rao Lower Bound
(CRLB) on the variance of the estimator of an unknown target pa-
rameter [16]. The CRLB is a tight bound only when the errors are
small [17]. It is well known [18, 19] that the performance of the
time delay estimators is characterized by the presence of distinct
SNR regions. When the SNR is high (asymptotic region), the CRLB
describes the MSE accurately. In low SNR regions, the information
from signal observations is insufficient and the MSE is close to that
obtained via only a priori information. In between these two lim-
iting cases lies the transition region where the signal observations
are subjected to ambiguities that do not factor in the CRLB [16].
Other bounds that are tighter than the CRLB have been developed
(see e.g. [20] for a survey). In particular, the Ziv-Zakai lower bound
(ZZLB) [21] can accurately identify the SNR thresholds that define
the ambiguity region [22].

In the context of radar signals, some examples of the CRLB for
estimating time delay, velocity, and direction of arrival of the target
are derived in, e.g., [23, 24]. The CRLBs for time delay estimation
have also been studied, jointly with Doppler, for active arrays [25],
MIMO [26], and extended targets [27]. The ZZLB treats the time
delay as a parameter that is distributed uniformly at random over an
interval. The ZZLBs for target location estimation have been derived
for a conventional radar [5] and several different configurations of

3141978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



MIMO systems [28, 29]. In this work, we derive the CRLB and the
ZZLB for estimating the time-delay for a single target in a cognitive
radar where the spectrum is multi-band or dispersed. Some previous
works for time-delay estimation in communications have derived
CRLB for a dispersed signal [30] without any maximum power con-
straint. We show that the delay estimation with cognitive radar is
always more accurate than the conventional radar if all subbands
have equal bandwidth. A comparison of ZZLB shows that cognitive
radar delay estimates are more accurate in low SNR regions than the
conventional radar even if their respective CRLBs are equal.

Our system model for CR is described in the next section. In
Section 3, we formulate a procedure to choose CR subbands when
the REM is known. Section 4 presents the derivation of the CRLB for
delay estimation with a CR and conditions for enhanced performance.
We revisit the same problem for the derivation of ZZLB in Section 5.
We conclude with remarks and future work in Section 6.

2. SYSTEM MODEL

We consider a single-antenna radar system that transmits a pulse h(t)
towards the targets-of-interest. We assume that the transmit pulse is
nonzero over the interval [0, τ ]. The transmit pulse spectrum is given
by the continuous-time Fourier Transform (CTFT) of h(t):

H(ω) =

∞∫
−∞

h(t)e−jωt dt ≈
Bh/2∫
−Bh/2

h(t)e−jωt dt, (2.1)

where the signal energy outside the bandwidth Bh is negligible. Sup-
pose a Swerling-1 target is located at range R with respect to the
radar, so that the round-trip time delay for the transmit pulse to the
target and back is given by τ0 = 2R/c0, where c0 is the speed of
light. We assume that the target environment is free of clutter and,
except the range, all other target parameters such as its reflectivity
and Doppler velocity are known. The continuous-time received signal
at baseband is then

xR(t) = h(t− τ0) + η(t), 0 ≤ t ≤ Ts, (2.2)

where Ts is the observation interval such that τ0 ∈ [0, Ts], and η(t) is
additive white Gaussian noise that is band-limited to B with two-sided
power spectral densityN0/2, and variance σ2 = N0Bh.

In our proposed CR, the spectrum of the transmit waveform h̃(t)
is restricted to a total of Nb non-contiguous frequency bands, each
represented by the set Bi, 1 ≤ i ≤ Nb, of its constituent frequencies
(Figure 1). We denote the center-frequency of the band Bi by ωCi

and its bandwidth by Bi so that Bi = [ωCi − Bi/2, ωCi + Bi/2].
The CTFT of h̃(t) is given by

H̃(ω) =


βiH(ω), ω ∈

Nb⋃
i=1

[
ωCi −

Bi
2
, ωCi +

Bi
2

]
⊂ Bh

0, otherwise,
(2.3)

where βi’s are the power redistribution constants that determine
the proportion of total power P to be distributed among different
subbands. Importantly, the total transmit power P of the CR remains
the same such that the power relation between the conventional and
cognitive waveforms:∫

Bh

|H(ω)|2 dω =

Nb∑
i=1

∫
Bi

|H̃(ω)|2 dω =

Nb∑
i=1

Pi = P, (2.4)

Fig. 1. A conventional radar with bandwidth Bh transmits in the band Bh.
A cognitive radar transmits only in subbands {Bi}Nb

i=1, but with more in-band
power than the conventional radar. Only one-sided spectrum is shown here.

where the subband powers Pi are higher than the full-band power.
The CR waveform consists of multiple subband waveforms h̃i(t)

combined together and transmitted over a single antenna. At the
receiver, the signal is filtered into the respective subbands and then
processed together. The received signal corresponding to the ith
subband can be expressed as

xCRi(t) = h̃i(t− τ0) + ηi(t), 0 ≤ t ≤ Ts, 1 ≤ i ≤ Nb, (2.5)

where ηi(t) is white Gaussian noise band-limited to Bi, independent
for different subbands, and with variance σ2

i = N0Bi. Note that
while the signal power is enhanced in subbands, the noise spectral
density remains the same. The spectral interference is considered
negligible in the selected cognitive radar bands. By superimposing
all the signals in (2.5), we obtain the continuous-time CR received
signal at baseband

xCR(t) =

Nb∑
i=1

xCRi(t) = h̃(t− τ0) + η(t), 0 ≤ t ≤ Ts. (2.6)

We define the signal-to-noise-ratio (SNR) for the signals h(t),
h̃i(t), and h̃(t) respectively as,

SNR =
P

σ2
=

P

N0Bh
; SNRi =

Pi
σ2
i

=
P

N0Bi
;

S̃NR =

Nb∑
i=1

Pi

/
Nb∑
i=1

σ2
i =

Nb∑
i=1

Pi

/(
N0

Nb∑
i=1

Bi

)
. (2.7)

We note that S̃NR > SNR. For the low-pass signal h(t), we define
its root-mean-square (rms) bandwidth F as

F =

√√√√√√√√√
Bh∫
−Bh

|H(ω)|2ω2 dω

Bh∫
−Bh

|H(ω)|2 dω

=

√√√√√√√√
Ts∫
0

[h′(t)]2 dt

Ts∫
0

h2(t) dt

, (2.8)

where we define h′(t) as the first derivative of h(t). For the second
derivative, we use the notation h′′(t). The rms bandwidth for the
band-pass signal h̃i(t) is,

Fi = 2

√√√√√√√√√√
ωCi

+Bi/2∫
ωCi
−Bi/2

|H̃i(ω)|2(ω − ωCi)
2 dω

ωCi
+Bi/2∫

ωCi
−Bi/2

|H̃i(ω)|2 dω

=

√√√√∫ Ts

0
[h̃i
′
(t)]2 dt∫ Ts

0
h̃i

2
(t) dt

,

(2.9)
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where a factor of 2 in the first equality occurs because the integrals
inside the square-root measure the rms bandwidth only on one side
of the spectrum. The rms bandwidth measures the “width” or the
variance of the power spectral density, and is smaller than or equal to
the full bandwidth. We can write for some constants α and αi’s:

F = αBh, α ≤ 1; Fi = αiBi, αi ≤ 1. (2.10)

For example, if the signals have flat CTFTs, then α = 1/
√

3.

3. SELECTION OF SUBBANDS

A major application of our cognitive radar is to avoid the spectral
interference from other systems. In this section, we develop a proce-
dure to select the subbands in the set Bh such that the subbands have
the least RF interference. The maximum number of CR subbands can
be fixed to Nb due to the receiver hardware constraints. We assume
the REM – a spectral map in the form of interfering energy levels at
all frequencies – is known to the radar user. We choose a Discrete
Frequency Transform (DFT) grid of M points which is large enough
so that it densely covers the set Bh. Suppose the measurements of
REM are available in the form of an M -point frequency-domain vec-
tor y. The information available from the REM may also indicate
that the CR waveform must avoid all the frequencies in a certain set
BC ⊂ Bh, which is decidedly used by another service. We seek
an M -point frequency response vector z that is nearly the same as
the spectrum of y in a total of Nb lowest interference subbands and
vanishes otherwise. We formulate z as an Nb-block-sparse vector
that consists of segments z1, z2, · · · , zNb of lengths d1, d2, · · · , dNb ,
respectively. It can be obtained by solving the optimization problem

minimize
z

(‖z1‖2 + ‖z2‖2 + · · ·+ ‖zNb‖2)

subject to
∥∥zBh\BC − yBh\BC

∥∥
2
≤ ξ

zBC = 0 (3.1)

where ξ is a positive constant. When the width of blocks in Z are
known (due to receiver hardware design constraints), but the locations
of the blocks are unknown, then greedy algorithms such as StructOMP
[31] can be employed to solve this optimization problem. In the above,
additional constraints of minimum bandwidths, constant power across
all bands, range sidelobe levels, and minimum separation between
the bands may also be imposed. For example, the hardware design
constraints may require all bands to be equal for simplicity, i.e.,
d1 = d2 = · · · = dNb .

The optimal subbands are the support of the vector z. Once the
CR subbands are identified, we would like to know an optimal way
to distribute the total power in different subbands. We address this
question in the context of the accuracy of time delay estimation in the
next section.

4. CRLB FOR DELAY ESTIMATION

Our goal is to develop and compare the CRLB expressions for esti-
mating time delays from the received signal in conventional (2.2) and
cognitive radars (2.6). We then use these bounds to determine the
choice of βi so that the accuracy is higher in CR.

The real-valued deterministic signal h(t) in (2.2) and h̃(t) in (2.6)
are known except for the parameter τ0. The deterministic CRLB for
the estimate τ̂0 of τ0 in case of the conventional radar is well-known
to be [24, 32]

CRLBR(τ̂0) =
σ2

PF 2
=

1

SNR · F 2
. (4.1)

In case of CR, we have the following result.

Theorem 4.1. The CRLB for estimating delay with the cognitive
radar received signal (2.6) is given by

CRLBCR(τ̂0) =
1

Nb∑
i=1

SNRi · F 2
i

. (4.2)

Proof: Let θ = τ0 be the unknown signal parameter. If all
the subband signals in (2.5) are observed over the duration Ts, then
the log-likelihood function of θ is

L(θ) = c−
Nb∑
i=1

1

2σ2
i

Ts∫
0

|xCRi(t)− h̃i(t− θ)|
2 dt, (4.3)

where c is a constant independent of the unknown parameter θ. Dif-
ferentiating the log-likelihood once produces

∂L(θ)

∂θ
=

Nb∑
i=1

1

σ2
i

Ts∫
0

(xCRi(t)− h̃i(t− θ))h̃i
′
(t− θ) dt, (4.4)

and a second differentiation results in

∂2L(θ)

∂θ2
=

Nb∑
i=1

1

σ2
i

Ts∫
0

{(xCRi(t)− h̃i(t− θ))h̃i
′′
(t− θ)

− [h̃i
′
(t− θ)]2} dt. (4.5)

Taking the negative of the expected value yields the Fisher informa-
tion I(θ) for the observed data

I(θ) = −E
[
∂2L(θ)

∂θ2

]
=

Nb∑
i=1

1

σ2
i

∫ Ts

0

[h̃i
′
(t− θ)]2 dt

=

Nb∑
i=1

1

σ2
i

∫ Ts

0

[h̃i
′
(t)]2 dt, (4.6)

where we note that the expectation is taken with respect to the pdf of
xCRi as a function of θ. The last equality is obtained by changing the
variables and noting that the signal is nonzero only over the interval
τ0 ≤ t ≤ τ0 + Ts. The CRLB is then

CRLBCR(τ̂0) =
1

I(θ)
=

1

Nb∑
i=1

Pi
σ2
i

∫ Ts

0
[h̃i
′
(t)]2 dt∫ Ts

0
h̃i

2
(t) dt

=
1

Nb∑
i=1

SNRi · F 2
i

,

(4.7)

completing the proof.
By comparing the CRLBs of conventional and cognitive radars,

we can find the distribution of the total power in different subbands
for better performance of cognitive radar.

Proposition 4.2. Given the subbands Bi and the full-band Bh, the
delay estimation with CR is not worse than the conventional radar if
the in-band powers obey the following relation

Nb∑
i=1

Piα
2
iBi ≥ Pα2Bh. (4.8)
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Proof: The CRLBCR(τ̂0) is lower than CRLBR(τ̂0), if

Nb∑
i=1

Pi
σ2
i

· F 2
i ≥

P

σ2
· F 2,

or

Nb∑
i=1

Pi
N0Bi

· α2
iB

2
i ≥

P

N0Bh
· α2B2

h,

from where the inequality in the proposition follows.

Corollary 4.3. Suppose the signals in (2.2) and (2.5) have flat CTFTs
over their respective bandwidths Bh and Bi. Then the condition in
Proposition 4.2 reduces to

Nb∑
i=1

β2
iB

2
i ≥ B2

h. (4.9)

Proof: Let the CTFTs have a constant value of A. Then P =
A2Bh and Pi = A2β2

iBi. Also, α = αi = · · · = αNb = 1/
√

3.
Substituting these in (4.8) completes the proof.

Corollary 4.4. In Corollary 4.3, if all CR subbands have same band-
width, then (4.8) always holds true.

Proof: In (4.8), Bis can be written as some fraction γ of Bh

so that P =
Nb∑
i=1

Pi ≥ γP , which is always true.

Corollary 4.5. In Corollary 4.3, if all the CR subbands have same

CTFT value, i.e. β1 = · · · = βNb = β, then β ≥ Bh/(
Nb∑
i=1

B2
i )

1
1 .

Since the CRLB analyses describes MSE only at high SNRs, we
turn to ZZLB comparison now for low SNR situations.

5. ZZLB FOR DELAY ESTIMATION

In order to derive the ZZLB for the signal model as in (2.2), we
assume τ0 is distributed uniformly at random over the interval [0, Ts],
with the pdf pτ0(τ0) and prior variance σ2

τ0 . For the scalar parameters,
the ZZLB bounds for the mean squared error (MSE)

ε2 = E{ε2} = E{|τ̂0 − τ0|2}, (5.1)

by averaging all errors δ over their probabilities Pr(|ε| ≥ δ/2) using
the following identity [33]

ε2 =
1

2

∞∫
0

Pr (|ε| ≥ δ/2) δ dδ. (5.2)

A detection theoretic approach for a binary hypotheses problem re-
veals that Pr(|ε| ≥ δ/2) is the probability of τ0 taking a value τ̃0
(H0 or null hypothesis) or τ̃0 + δ (H1 or alternative hypothesis). The
basic ZZLB expression is the following integral [34]

ε2 ≥ 1

Ts

Ts∫
0

δ dδ

Ts−δ∫
0

Pe(τ̃0, τ̃0 + δ) dτ̃0, (5.3)

where Pe(τ̃0, τ̃0 + δ) is the minimum attainable probability of error
in the likelihood ratio test between the two hypotheses. Typically, the
ZZLB results in complex and intractable integrals.

For delay estimation in a conventional single-antenna radar, with
signal model as in (2.2), [33] derived a closed-form expression for
a weaker version of the so-called extended ZZLB (EZB). The key
assumption made here is that the transmit pulse-width τ is short
compared to the interval Ts. This assumption simplifies the EZB for
the conventional radar as [33]

EZBR(τ̂0) = σ2
τ0 · 2Q

(√
SNR

2

)
+

Γ3/2

(
SNR

4

)
SNR · F 2 , (5.4)

where Q(·) denotes the right tail Gaussian probability function and
Γa(b) is the incomplete gamma function with parameter a and upper
limit b. The behavior of the EZB in (5.4) can be summarized as
follows. When the SNR → 0, then the right-tail probability func-
tion approaches unity and the incomplete gamma function vanishes;
therefore, in low SNR situations, the EZB is determined mostly by
the a priori distribution through σ2

τ0 . However, when SNR→ ∞,
then Q(·) vanishes and Γ3/2(·) approaches unity. Therefore, the
high-SNR EZB converges to 1/(SNR · F 2), which is same as the
CRLB obtained in (4.1). The exact thresholds for the asymptotic and
a priori regions can be found using techniques from [18, 19, 33].

To derive an expression for cognitive radar similar to the EZB,
we make the same assumption that the transmit pulse of the cognitive
radar is short when compared to Ts.

Theorem 5.1. The EZB for estimating delay with the cognitive radar
received signal (2.6) is given by

EZBCR(τ̂0) = σ2
τ0 · 2Q


√
S̃NR

2

+

Γ3/2

(
S̃NR

4

)
Nb∑
i=1

SNRi · F 2
i

. (5.5)

We omit the detailed derivation of the result in Theorem 5.1
due to space. Suppose the in-band powers are distributed such that
the CRLBs of both conventional and cognitive radars are same (i.e.

SNR ·F 2 =
Nb∑
i=1

SNRi ·F 2
i ). Then, their EZB comparison provides

an important revelation: since the S̃NR > SNR for a given power
P , the SNR threshold for asymptotic performance of EZBCR is
lower than EZBR. In other words, as the noise increases and power
remains constant for both radars, the asymptotic performance of
EZBCR is more tolerant to the noise than the EZBR.

6. SUMMARY

We devised procedures to identify appropriate subbands and distri-
bution of in-band powers for a single-antenna CR, where we derived
the CRLB and ZZLB for time-delay estimation of a single target.
The CRLB comparison of cognitive and conventional radar provides
conditions for distributing the total power in different subbands. We
restricted ourselves to a single target and single pulse. If multiple
pulses are being transmitted, then the energy of the signal is enhanced
by a factor given by the number of pulses and the analysis is anal-
ogous. The multiple point targets merit consideration of the range
sidelobes. In future work, it would be interesting to provide CR
power conditions for accuracy of estimating other parameters such as
Doppler velocity.
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