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ABSTRACT

Through-the-wall radar imaging is an electromagnetic wave sens-

ing technology capable of detecting targets behind walls, doors,

and opaque obstacles. Identification of stationary targets is often

achieved by first forming an image of the scene, and then segment-

ing and classifying the targets of interest. In order to provide prompt

and reliable situational awareness, this paper proposes a radar sig-

nal classification approach that does not rely on image formation.

Here, a dictionary learning based method is employed to classify

targets behind a wall using the signals received from individual

antennas. The cepstrum coefficients of the high resolution range

profile are first extracted as features. Then, the latent consistent

K-SVD algorithm is used to learn a discriminative dictionary and

a linear classifier simultaneously. Experimental results show that

the proposed method can classify individual radar signals with high

accuracy, without having recourse to image formation.

Index Terms— Through-the-wall radar imaging, signal classi-

fication, dictionary learning, LC-KSVD

1. INTRODUCTION

Through-the-wall radar imaging (TWRI) technology applies elec-

tromagnetic (EM) waves to image targets behind opaque obstacles,

such as walls or doors, and inside an enclosed building structure.

It can produce an image of the interrogated scene and provide vi-

tal intelligence information to law enforcement officers, soldiers or

search-and-rescue personnel [1]. However, to develop a reliable

TWRI system, several challenging tasks have to be addressed, one

of which is target classification. For moving target classification,

several methods based on micro-Doppler signature have been pro-

posed [2–5]. Change detection and micro-Doppler based techniques

are not applicable to stationary target classification. Thus, alternative

classification methods are required to identify stationary targets.

Several approaches have been proposed for classifying station-

ary targets in TWRI [6–9]. Some of the classification methods ex-

tract features directly from the radar signal, but the majority of the

methods perform image formation and target segmentation before

feature extraction [7–9]. Ho et al. applied Prony’s algorithm and

singular value decomposition to estimate the poles of the received

signal for different target materials and then used the parameters of

the estimated poles as features [6]. However, the estimation of the

poles becomes unstable at low signal-to-noise ratio. Balthasar et

al. employed a compressive classification method using smashed

filter to discriminate the number of targets and the target types in

TWRI [10]. One issue with the smashed filter is that its performance

depends on the stability of the dimensionality reduction of the data

manifold [11].

Instead of processing the radar signal for feature extraction,

Debes et al extracted statistical and geometrical features from a

three-dimensional (3D) beamformed image to classify targets from

clutter [7]. They first used the iterated conditional modes or the

level set method to segment the image. Then, they estimated the

parameters of the Weibull distribution as statistical features and

the parameters of the superellipsoids fitted to the segmented vox-

els as geometric features. Smith and Mobasseri extracted features

from a 3D beamformed image and used a naive Bayes classifier to

discriminate four different types of targets [13]. The image was

segmented by selecting the voxels at 3 dB in intensity within the 3D

iso-surface. For each target voxel position, high range resolution

profiles (HRRPs) in all three dimensions were extracted as features.

The HRRPs were then compressed using principal component anal-

ysis to create a feature vector [13]. These image-based classification

methods require the formation of a 3D image for feature extraction,

which can be a time consuming process.

In this paper, we propose a signal classification method for

TWRI based on dictionary learning and sparse representation. The

proposed method avoids the image formation step by learning a set

of data-driven bases from the received signals to classify different

stationary targets behind the wall. Instead of applying a predefined

orthoprojector to select a set of measurements or features as de-

scribed in [10], the radar signal is represented by a set of sparse

coefficients, where the bases (or atoms) of the dictionary are learnt

from the data. Furthermore, the proposed method is independent of

the cross-range resolution since it classifies the received signal at

each individual antenna separately.

The remainder of the paper is organized as follows. Section 2

presents the through-the-wall radar signal model. Section 3 de-

scribes the dictionary learning based signal classification method,

followed by experimental results in Section 4. Finally, Section 5

presents concluding remarks.

2. THROUGH-THE-WALL RADAR SIGNAL MODEL

This section presents the signal model of a through-the-wall mono-

static stepped-frequency radar system. Consider a linear array of

N antenna elements placed at a certain standoff distance from the

wall, where each antenna transmits and receives a wideband stepped-

frequency signal comprising M frequencies, ωm (m = 0, . . . ,M −
1). Assuming that there are Pt point targets behind the wall, the

radar signal received by the n-th antenna at the m-th frequency can
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be expressed as

ym,n =

Pw∑

k=1

σ
w
nAke

−jωmτk
n,w +

Pt∑

i=1

σ
t
ie

−jωmτn,i + ǫm,n, (1)

where σw
n is the complex reflectivity of the wall, τ1

n,w represents the

propagation delay associated with the direct return from the wall,

τk
n,w (k > 1) is the propagation delay associated with the k-th wall

reverberation, Ak represents the path loss factor of the k-th wall re-

turn, Pw is the number of wall reverberations, σt
i is the complex

reflectivity of the i-th target, τn,i is the two-way propagation delay

between the n-th antenna and the i-th target, and ǫm,n is the mea-

surement noise. Since the wall returns are relatively stronger than

the target echoes, they need to be removed, or at least significantly

attenuated, before target classification. Here, the background sub-

traction technique was used to remove the direct wall returns and

wall reverberations from each antenna signal.

3. SIGNAL CLASSIFICATION USING LC-KSVD

After the removal of the wall returns, signal classification is achieved

by learning a dictionary over features extracted from individual an-

tenna signals. The following subsections describe in more detail fea-

ture extraction, dictionary learning, and classification of radar sig-

nals.

3.1. Feature Extraction

Feature extraction is a key step for improving the accuracy and

robustness of the classification method. In radar target classification,

the received signal is often represented as a HRRP, which depicts

the target strength (magnitude) as a function of location (range).

Suppose that the maximum unambiguous range R is divided into M
bins, with a range resolution ∆r, R = M∆r. Let ŷm,n denote the

n-th antenna signal at the m-th frequency after wall clutter mitiga-

tion and zk,n be the k-th range bin of the HRRP at the n-th antenna

location. The signals zk,n and ŷm,n (k,m = 0, . . . ,M − 1) are

related by the discrete Fourier transform:

zk,n =
1

M

M−1∑

m=0

ŷm,ne
jωm(2k∆r)/c

k = 0, . . . ,M − 1, (2)

where c is the speed of light. After obtaining the HRRP from the

radar signal, we can use its magnitude as a feature for classification.

In this paper, two other types of features are investigated, namely

magnitude spectrum and the cepstrum coefficient of the HRRP it-

self. The cepstrum coefficient is obtained by computing the inverse

discrete Fourier transform of the log-magnitude Fourier spectrum of

the HRRP. Mathematically, the cepstrum of the n-th HRRP can be

written as

vn = |F−1{log(|F{|zn|}|+ 1)}|, (3)

where |·| denotes the magnitude operator, zn = [z0,n, . . . , zM−1,n]
T

is the HRRP of the n-th antenna signal, and F and F−1 denote, re-

spectively, the discrete Fourier transform (DFT) and inverse DFT

operators.

Due to changes in aspect angle and the position of the target with

respect to the antenna location, not all the received signals contain

sufficient target information for classification. Therefore, we only

classify those antenna signals whose energies are above a certain

threshold. Here, the threshold η is computed as the average of the

energies of all the HRRPs obtained from the antenna array,

η =
1

N

N∑

n=1

M−1∑

k=0

|zk,n|
2
. (4)

3.2. Dictionary Learning

Dictionary learning methods have been employed in various appli-

cations, including face recognition [14], speech emotion recogni-

tion [15], and EEG signal classification [16]. One of the popular

techniques for learning a dictionary from a given data is K-SVD,

proposed by Aharon et al. [17]. The K-SVD method solves an

optimization problem by alternately finding sparse representations

given a dictionary and then updating the dictionary. To improve the

K-SVD method, Jiang et al. incorporated the label information of the

data into the optimization problem and proposed the label consistent

K-SVD (LC-KSVD) [18]. These two dictionary learning methods

are briefly described in the following subsections.

3.2.1. K-SVD

Let Y ∈ R
M×P denote a set of M -dimensional feature vectors

extracted from the HRRPs, where P is the number of feature vectors.

To learn a dictionary D ∈ R
L×G, G > M , the K-SVD algorithm

solves the following optimization problem:

〈D∗

,X
∗〉 = argmin

D,X
‖Y −DX‖2F

s.t. ‖xi‖0 ≤ K, ∀i (5)

where X ∈ R
G×P is a sparse matrix in which each column xi con-

tains no more than K non-zero entries. After learning the dictionary

D∗ and computing the sparse representations of the radar signals

X∗, we can train a linear classifier by solving the following linear

ridge regression problem:

W
∗ = argmin

W

‖H−WX
∗‖

2
F + λ ‖W‖2F , (6)

where H ∈ R
C×P denotes the label matrix with C classes and λ is

a regularization term.

3.2.2. LC-KSVD

The principle of LC-KSVD method is to learn a discriminative

dictionary and train a linear classifier simultaneously. In [18],

the dictionary learning and classifier training are formulated as a

constrained optimization problem, which incorporates a discrimi-

native sparse-code error term to encourage similarity among sparse

representations of the signals of the same class. The constrained

optimization problem is given by

〈D∗

,W
∗

,A
∗

,X
∗〉 = argmin

D,W,A,X
‖Y −DX‖2F+α ‖Q−AX‖2F

+ β ‖H−WX‖2F s.t. ‖xi‖0 ≤ K, ∀i (7)

where Q ∈ R
G×P is the discriminative sparse-code matrix,

A ∈ R
G×G is a linear transformation, and α and β are the reg-

ularization parameters that control the relative contribution of the

discriminative sparse-code error and the classification error terms,

respectively.
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Once the dictionary D∗ and the matrix weight W∗ of the linear

classifier are obtained using LC-KSVD, the classification of a test

sample y is performed as follows. First, the sparse representation of

the test sample is calculated by solving

x
∗ = argmin

x

‖y −D
∗

x‖
2
2 s.t. ‖x‖0 ≤ K. (8)

Let W∗ = [w∗

ij ] and x
∗ = [x∗

1, . . . , x
∗

G]
T . Then, the class label of

the test sample is determined as

l = argmax
i

G∑

j=1

w
∗

ijx
∗

j , i = 1, . . . , C. (9)

4. EXPERIMENT RESULTS

The proposed radar signal classification approach is tested on

synthetic data obtained with EM numerical simulation using XFDTD

software. The experimental setup and data collection, including the

imaged scene, the radar parameters, and the targets, are described in

the next section. This is followed by an evaluation of the proposed

classification method.

4.1. Experimental Setup and Data Collection

A 41-element antenna array covering a horizontal scanning distance

of 2.4 m was placed at a standoff distance of 1.0 m in front of a ho-

mogeneous wall. The imaged scene depicted in Fig. 1(a) was a 3 m

× 4 m area (i.e., 3 m down-range and 4 m cross-range) behind the

wall of thickness 0.15 m and a dielectric constant of 7.76. A stepped-

frequency signal of 1.1 GHz bandwidth centered at 2.75 GHz with

a step size of 5 MHz was used to interrogate the scene behind the

wall. Five metallic objects with similar cross-section—a dihedral, a

trihedral, a square plate, a cylinder, and a sphere—were placed be-

hind the wall. Each target was placed at five different positions in

the scene: top-left (P1), top-right (P2), center (P3), bottom-left (P4),

and bottom-right (P5). Figure 1 depicts a schematic diagram of the

TWRI scene along with the scene layout showing the target loca-

tions. For each target type, a set of 41 signals was collected from

the antenna array at each target position (P1–P5). Five-fold cross-

validation was used to estimate the classification rate (CR) in all ex-

periments. In each validation fold, all the radar signals at four target

positions were used for training and the radar signals whose HRRP

energies were greater than a given threshold at the remaining target

position were selected for estimating the CR. This was repeated five

times for different test sets and the final CR was computed as the

percentage of correctly classified samples, which were aggregated

across all the validation folds.

4.2. Performance of Feature Extraction Methods

Three types of features are used to form the discriminative dictio-

nary: the magnitude of the HRRP, the magnitude of the Fourier co-

efficient of the HRRP, and the cepstrum coefficient of the HRRP.

The parameters of LC-KSVD are set as follows: the dictionary size

G = 700, the sparsity level K = 25, and the regularization pa-

rameters α = 4 and β = 2. The CR for each feature type is ob-

tained by using five-fold cross-validation. Table 1 presents the CRs

of LC-KSVD using the three different types of features considered

here. Among the three types of features, the cepstrum coefficient

gives the highest CR, followed by the magnitude of the Fourier co-

efficient. Learning the dictionary using only the magnitude of the

HRRP achieves the lowest CR of 87.9%.

(a)

Antenna array

Wall

P1 P2

P5P4

P3
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m
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1.3 m

1.3 m

1.3 m

1.3 m2
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5
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0
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5
m

0
.6

5
m

(b)

Fig. 1. (a) Schematic diagram of the simulated TWRI scene, and (b)

scene layout and target location.

Table 1. Classification rate of LC-KSVD using different types of

features.

Feature CR

Cepstrum coefficient of the HRRP 96.0%

Magnitude Fourier coefficient of the HRRP 93.9%

Magnitude of the HRRP 87.9%
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4.3. Effects of Dictionary Size and Sparsity Level on Classifica-

tion Rate

The dictionary size and sparsity level both have an influence on the

CR of LC-KSVD. Several simulations are performed by varying the

number of atoms in the dictionary from 200 to 1400, with a step size

of 100 and the sparsity level from 10 to 100, with a step size of 10.

Figure 2 illustrates the evolution of the CR of LC-KSVD as a func-

tion of the dictionary size for a fixed sparsity level of 20. The highest

CR is achieved when the number of atoms reaches 800. Further in-

creasing the number of atoms in the dictionary barely improves the

CR of LC-KSVD. Figure 3, on the other hand, depicts the CR of

LC-KSVD as a function of the sparsity level with the dictionary size

fixed to 800. From this figure, it is clear that increasing the sparsity

level beyond 20 decreases the CR of the dictionary learning method.

In the following experiments, the dictionary size and the sparsity

level are set to 800 and 20, respectively.

200 400 600 800 1000 1200 1400

Dictionary size

30

40

50

60

70

80

90

100

C
R

 (
%

)

Fig. 2. Classification rate of LC-KSVD with K = 20.
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Fig. 3. Classification rate of LC-KSVD with G = 800.

4.4. Effect of Target Position on CR

The aim here is to investigate the influence of target location on the

CR of LC-KSVD. The dictionary and classifier are trained with sig-

nals from 4 of the 5 target positions, and they are tested on signals

from the remaining target position. Here, the cepstrum coefficients

are used for training the discriminative dictionary. Table 2 presents

the CR at the five target locations: P1, P2, P3, P4 and P5. The dic-

tionary learning method achieves 100% CR at 4 target locations.

Table 2. CRs of LC-KSVD when a stationary target is placed at

different positions behind the wall.

Target position

P1 P2 P3 P4 P5

CR 100% 100% 93.0% 100% 100%

In terms of classification of different types of targets, the

confusion matrix of the dictionary learning method is shown in

Table 3. The main diagonal of the matrix lists the correct CR for

each target type. The off-diagonal entries indicate misclassification

rates. The entry at (i, j) gives the CR of the target known to be in

class i but classified as class j. For instance, the cylinder target is

misclassified as a plate with a rate of 2.6%. Other targets such as

the plate and sphere targets are classified perfectly. The overall CR

of the system is 98.1%.

Table 3. Confusion matrix of LC-KSVD for different types of sta-

tionary targets.

Predicted

Plate Cylinder Dihedral Sphere Trihedral

A
ct

u
al

Plate 100% 0% 0% 0% 0%

Cylinder 2.6% 97.4% 0% 0% 0%

Dihedral 5.3% 0% 94.7% 0% 0%

Sphere 0% 0% 0% 100% 0%

Trihedral 0% 0% 1.7% 0% 98.3%

5. CONCLUSION

This paper proposed a technique for through-the-wall radar signal

classification, which does not require the image formation. The

proposed method employs dictionary learning and sparse represen-

tation to classify individual antenna signals. Features extracted from

HRRP, such as cepstrum coefficients, are used to jointly learn a

discriminative dictionary and train a linear classifier. Experiments

based on simulated data show that it is possible to classify the

behind-the wall targets from the individual radar signals with high

classification rates.
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