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ABSTRACT

This work presents a mathematical approach for recovering a
physical model from a low-rank approximation of measured
data obtained via the singular value decomposition (SVD).
The general form of a low-rank physical model of the data
is often known, so the presented approach learns the proper
rotation and scaling matrices from the singular vectors and
singular values of the SVD in order to recover the low-rank
physical model of the data from the SVD approximation. By
recovering the low-rank physical model, it becomes possible
to exploit specific knowledge of the model to extract mean-
ingful information for the physical application being studied.
This work is useful for processing wide-band electromagnetic
induction data—the motivating application.

Index Terms— low-rank model, SVD, `1-SVD, electro-
magnetic induction

1. INTRODUCTION

This work focuses on a mathematical derivation for recov-
ering a low-rank model of a signal. The singular value de-
composition (SVD) is a well known mathematical tool for
obtaining a low-rank approximation from measured data. The
SVD is a powerful tool and has been proven to be the optimal
approximation of a low-rank matrix [1]. However, the SVD
rarely has the same constraints as the low-rank model that is
described through the physical properties of an application.
This work builds upon the SVD by exploring the mathemati-
cal operations necessary to recover a low-rank physical model
from the SVD. In a measurement system the low-rank phys-
ical model makes it easy to extract information about param-
eters that relate directly to properties described by equations,
e.g., from acoustics or electromagetics.
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2. BACKGROUND

The goal of this effort has been to improve the signal process-
ing of wideband electromagnetic induction (WEMI) sensors.
WEMI sensors are used for locating and classifying buried
objects by energizing eddy currents within a conductive ob-
ject and measuring the secondary magnetic fields as the object
releases the energy. The object response is described by (o)
independent tensors that govern the coupling of the sensors
magnetic fields to the eddy currents and (r) exponential de-
cay rates that govern the rate of energy release. These tensors
and decay rates are physical properties of the object that can
be used to classify the object.

WEMI sensors operate in a synthetic aperture mode by
taking m (frequency response) measurements at n positions
as the sensor passes over an object. The spatial response of
the sensor is due to the sensor’s magnetic fields, the object
location, and the tensors, while the frequency response is due
to the exponential decay rates and the tensors. With a de-
tailed physical model that properly accounts for the tensors, it
is possible to extract object location, exponential decay rates
and tensors (the orientation of the object is embedded in the
recovered tensor) with processing. The tensors are 3×3, pos-
itive semidefinite, and symmetric; and in the model, they are
each expressed by a tensor amplitude written as a vector in-
volving at most p = 6 parameters.

Previously, WEMI data has been processed in three
stages: First, downtrack filtering that combines multiple loca-
tion measurements to improve the signature strength [2, 3, 4];
second, recovery of the object’s signature, by using the Dis-
crete Spectrum of Relaxation Frequencies (DSRF) inversion
[5, 6]; third, locating the object and determining its tensors
by examining each DSRF frequency separately and using the
tensor WEMI model [7].

Our most recent work with WEMI sensors creates a “fil-
terless” processing scheme [4] by exploiting the dipole model
[8, 9] for the target along with a reciprocity relationship [9,
10] to write the noise-free model in a form that is a product
of a frequency and spatial response:

Ŝ = F G HT (1)
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where Ŝ ∈ <m×n is the signal received from the object, F ∈
<m×o contains the object’s frequency signatures, G ∈ <o×p

contains the tensors that describe the object’s coupling, and
HT ∈ <p×n contains the sensor’s magnetic fields for a range
of sensor positions that are used to sense the object and ob-
tain its location. As for the dimensions, p = 6 and o ≤ 6 are
known from the model, m = 42 for the Georgia Tech WEMI
platform, and n is roughly 100 depending on the number of
location samples. Because min(o, p) � min(m,n), a low-
rank matrix is appropriate. The low-rank matrix approxima-
tion is obtained from the data by using the SVD. The desire
to recover the physical model over the SVD representation is
due to the fact that G has further unique properties that can
be exploited, such as each row of G is a tensor amplitude rep-
resenting a 3×3, positive semidefinite, and symmetric tensor.
By recovering the physical low-rank model, it will be possible
to implement further processing to exploit such knowledge.

It should be noted that the recent approach for WEMI sen-
sors has clear similarities to the `1-SVD algorithm developed
by Malioutov et. al. [11] for the direction of arrival (DOA) es-
timation problem. The DOA `1-SVD algorithm uses a model
that can be described as F H, where G is the identity matrix.
The SVD is used to create a low rank approximation, and
a second order cone (SOC) optimization problem is created
to extract the DOA information from the SVD. This connec-
tion implies that this new work could prove useful to a wider
audience where the `1-SVD algorithm is of interest, but the
application has a further desire to recover the entire low-rank
model. Because of this potential generality, the remainder of
this work is carried out in a general format for easy transfer-
ence to other applications.

3. MODEL RECOVERY

The general model for noisy measurements

S = Ŝ+ E = F G HT + E (2)

where Ŝ, F, G, and H are defined in (1), and E is a matrix
of i.i.d. Gaussian noise. In order for the recovery to work,
the model must span the smallest row and column subspaces
possible. This is done by ensuring that F and H are full-rank
matrices. In order to process the data, the SVD of S is taken
to both recover a low-rank approximation and also denoise
the signal. The SVD operation creates

S = US ΣS VS
T . (3)

The SVD can be chosen to correctly approximate the low-
rank matrix, but it enforces properties on the created matrices
that are usually undesirable in the model, such as ΣS is diago-
nal and US and VS are both orthonormal. This work focuses
on using the available information from the SVD to recover
the original low-rank model from the data. The recovery of

the low-rank model is accomplished by noting that

F

G HT

≈ US

ΣS VS
T

(4)

are equal except for the noise term (assumed small) that can
be associated with the small singular values of the SVD.

Initially, we assume o = p in (4), so G is square and the
matrix pairs (F,US), (G,ΣS), and (H,VS) have the same
dimensions. In the next section, a minor alteration will be
introduced to relax this constraint.

3.1. Aligning subspaces

To simplify the discussion of recovering the low-rank model,
it is useful to assume that F and H are known a priori, even
though this assumption is unexpected in practice. Based on
the relationship in (4), F and US span the same subspace, so

US = F QU (5)

where QU is a matrix responsible for orthogonalizing the
columns of F and then unit scaling them. Because (4) is ap-
proximate when the measured data is noisy and US + ε =
F QU where ε is a noise term, it is necessary to solve (5) via

min
QU

‖US−F QU‖2 (6)

which leads to a standard least-squares solution

QU = F†US, (7)

where F† is the pseudo-inverse that is defined as F† =
(FT F)−1 FT . Just like F and US, H and VS span the
same subspace, so the above discussion applies for getting
QV ∈ <p×p via the least-squares minimization of

min
QV

‖VS−H QV ‖2 (8a)

QV = H†VS . (8b)

3.2. Recovering the center term

Once the least squares solution for the subspaces are found,
it is possible to recover G. This is accomplished by inserting
the relationships from (5) into (4) to obtain

US ΣS VS
T = F QU ΣS QT

V HT = F G HT (9)

From (9) it becomes possible to recover G as

G = QU ΣS QT
V . (10)

With pseudo-inverses of F and H, (10) can be rewritten as

G = F†US ΣS VS
T H†T = (F†F)G(H†H)T (11)
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3.3. Relaxing the model

In order to extend the model recovery method to the case
where o 6= p, we must reexamine (10) when G is not square.
The following discussion assumes o < p, which is the WEMI
model, but a similar process can be applied if o > p. When
o < p, the SVD produces VS

T ∈ <o×n and ΣS ∈ <o×o, but
HT ∈ <p×n. To relate H and VS we propose

VS = H B (12)

where B ∈ <p×o is not square. The same derivation as in
(8a) and (8b) leads to the least-squares problem statement and
solution for B

min
B
‖VS−H B ‖2 (13a)

B = H†VS . (13b)

Thus the matrix B replaces QV in (8a), so we recover G by
rewriting (10) as

G = QU ΣS BT . (14)

This result is the correct extension, but it should be noted that
when o 6= p the matrix B is not invertible. When o > p the
derivation is similar, but the square matrix QU in (10) would
be replaced with a rectangular o× p matrix.

4. OBTAINING MODEL SUBSPACES

In order to obtain the low-rank model from the data, it was
previously assumed that F and H were known a priori. In
reality, obtaining valid matrices for F and H is the important
problem of interest for recovering the model in (1). The solu-
tions for F and H might be different and can be application
specific. The benefit of recovering the low-rank model from
the SVD is that it has completely decoupled the estimation of
F and H. The only joint estimation required occurs when ob-
taining G. Separating these estimation problems better aligns
with the model and allows for a more robust processing de-
sign. With respect to the WEMI application, this new ap-
proach should allow for a more accurate location estimation
(from H) than the three stage approach because the DSRF
inversion errors (in F) will no longer affect the location esti-
mation. This work will introduce the two methods of inter-
est for the WEMI application, as well as a third method that
is obtained from the model relaxation section above. These
methods are generic approaches to the solution that can serve
as baseline approaches for choosing the matrices F and H.

4.1. Subspace selection approach

The subspace selection (SS) approach is the first subspace
matrix approach. SS is used when multiple options can be
created from a model, but only a single option can be accu-
rate. An example of this scenario is the position matrix H

for the WEMI application. Using equations from the physical
model, it is possible to simulate what H should be for any tar-
get location below the WEMI sensor. By creating a discrete
grid of locations and simulating H for each of the grid points,
it is possible to generate a large dictionary of H’s. Under the
assumption that the WEMI targets are physically separated
such that the WEMI sensor is only interacting with one tar-
get at a time, obtaining the correct H becomes a problem of
selecting the best H from the dictionary.

In order to select the best fitting H, it is possible to use the
relationships described in the model recovery. For the p = o
case, (8a) can be used as a measure of how well H fits the
measured data. SS solves

min
i

min
QV

‖VS−Hi Qi
V ‖2 (15)

where Hi is one entry in the dictionary of all possible H’s.
In words, (15) fits VS from the SVD in (3) to all possible H,
and then selects the Hi that best aligns with the VS subspace.

4.2. Sparse subspace creation approach

The sparse subspace creation (SSC) approach is the second
subspace matrix approach. SSC is used when a sparse op-
timization problem can be designed to represent one of the
subspaces. An example of this approach for the WEMI ap-
plication would be using the DSRF to estimate the target’s
signature response F. The DSRF allows F to be modeled as

F = A W (16)

where A ∈ <m×z is an over-complete dictionary, i.e., z > m,
and W ∈ <z×o is a matrix of weights that select a few of the
dictionary (column) vectors from A to create F. The matrix
W is sparse because most of the rows are zero. The matrix A
is known from the physics of the WEMI sensor. The model
of (16) can be inserted into (5) to obtain

US = A W QU = A C (17)

where C = W QU . The form of (17) is the same as the
model used in [11] to derive the SOC optimization problem

min
C
‖US−A C ‖2F + λ‖C`2 ‖1 (18)

where ‖.‖F is the Frobenius norm, λ is a tuning parameter,
and C`2 is a vector containing the `2 norm of each row in C.
Other algorithms such as IAA [12] and M-FOCUSS [13] are
also designed to solve problems such as (17).

It should be noted that SSC solves for C instead of QU .
Solving for the center of the model again as was done in (9)
and (10) obtains

US ΣS VS
T = A C ΣS QT

V HT = A W G HT (19a)

W G = C ΣS QT
V (19b)
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for the SSC approach. For the WEMI application, the solu-
tion of W G is of more interest than G alone. This is because
W G is the orientation tensor of a target that has been de-
composed into a set of orthogonal basis vectors, G, and their
associated weights, W.

4.3. Subspace projection approach

The subspace projection (SP) approach is the final subspace
matrix approach. SP can be used when the model subspace
is created from an unknown linear combination of a larger
subspace. Start with the general model of S = F G HT and
replace H with a linear combination of a larger (known) sub-
space that can be written as

H = Y Z (20)

where Y ∈ <n×w, Z ∈ <w×p, and w > p. Then we write

S = F G HT = F(G ZT )YT = F(GT
Z)YT (21)

By using (13b) with Y replacing H we obtain

BY = Y†VS . (22)

Then repeating (14) for the new model, we get

G ZT = GZ = QU ΣS BT
Y . (23)

which shows that G ZT can be recovered when Y is known.

5. RESULTS

In order to confirm the low-rank physical model recovery pro-
posed, simulations were run for the WEMI application. A
target with three metal loops was simulated, where each loop
contains a unique exponential decay rate and the loop ten-
sors are orthogonal. The simulations also used 600 positions
which creates a signal model having m = 42, o = 3, p =
6, and n = 600. Each run simulated a random exponential
decay rate for the loops and the target was rotated in a ran-
dom direction. The signal to noise ratio (SNR) has been de-
fined as the ratio between the smallest singular value of Ŝ
and the largest singular value of E where E ∈ <42×600 is the
noise matrix that is populated from an i.i.d. N (0, 1) distribu-
tion. Multiple SNRs are examined in Fig. 1, where the aver-
age error from 100 runs is presented for each SNR. The error
has been calculated as ‖G−Ĝ‖F‖Ĝ‖F

, where ‖.‖F is the Frobenius

norm and Ĝ is the estimated G from the simulated data.
As seen in Fig. 1, recovering the tensor information G

with the known subspace problem is very accurate. The SS
approach exhibits equivalent performance, indicating that
(15) can accurately select H. The SP approach is slightly
worse, as some error is incurred from the least-squares ap-
proximation of the smaller subspace. SSC is comparable to
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Fig. 1. The error vs. SNR curve for recovering G from simu-
lated WEMI data using the proposed methods.

SS for high SNRs, but SSC struggles to find the correct basis
at lower SNR values which leads to large errors. In fact, the
Frobenius error is a poor metric for SSC because it reports
a large error when SSC chooses a reordering of the correct
basis. The median is displayed to remove these outliers.

This low-rank physical model recovery technique has also
been applied successfully to laboratory data and WEMI field
measurements. The results are very encouraging for the re-
covery of tensor information which is the most challenging
task. Due to space limitations these processing results are not
included here, but have been submitted for publication [14].

6. CONCLUSION

This work has presented a method for recovering the low-rank
physical model from the SVD low-rank approximation of the
measured signal. This low-rank model recovery has been ac-
complished by recognizing that the US and VS from the SVD
have to span the same subspace as the matrices in the model.
By fitting a rotation and scaling matrix for each of these sub-
spaces, it is possible to recover the physical model from the
SVD. This work showed how the physical model could be re-
covered when the middle matrix in the physical model is both
square and rectangular. The recovery process has been pre-
sented in a generic format, where the only application specific
portion originates from subspaces that the equations of the
physical model define. Three possible approaches for find-
ing the subspaces were presented which should cover a wide
variety of applications.

The discussed model recovery technique is designed to
transform a low-rank approximation from data into a physical
model. This recovery should be performed when there is fur-
ther knowledge about the physical model that can be exploited
beyond the low-rank nature. This specific work has been
designed for Wideband Electromagnetic Induction (WEMI)
processing. Figure 1 demonstrated the effectiveness of the
low rank model recovery method on simulated WEMI data.
The G for the WEMI data was accurately recovered, which
will allow further processing to exploit the known structure of
G from the physical model.
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