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ABSTRACT
This paper is concerned with the development of a computa-
tionally efficient optimization algorithm for off-grid direction
finding using a sparse observation model. The optimiza-
tion problem can be formulated as one smooth plus two
nonsmooth functions. We propose two accelerated smooth-
ing proximal gradient algorithms. The Nesterov smoothing
methodology is utilized to reformulate nonsmooth functions
into smooth ones, and the accelerated proximal gradient algo-
rithm is adopted to solve the smoothed optimization problem.
The computational efficiency and efficacy of the proposed
algorithms are demonstrated numerically.

Index Terms— Smoothing, Nonsmooth function, Accel-
erated proximal gradient, Nondifferentiable, Group sparsity

1. INTRODUCTION

Application of compressed sensing [1, 2] to directions-of-
arrival (DoA) estimation has been an active area of investi-
gation. In its original formulation, the compressed sensing
approach for DoA estimation assumed a known dictionary
formed from the array responses at a grid of candidate di-
rections [3]. In practice, however, the DoAs are most likely
not to be located on the model grid, leading to the now well-
known off-grid DoA estimation problem, for which a number
of model approximations and solutions have been proposed,
for example [4–10]. A commonly-used observation for off-
grid DoAs follows the noisy structured perturbation model
given by:

y = (A+BΓ)s+ n, (1)

where A ∈ CM×N is known, and B ∈ CM×N is known as
part of the off-grid approximation. Γ = diag(β), and β =
[β1, . . . , βN ]T is denoted as the unknown coefficient vector
for the approximation. s is the sparse vector associated with
grid points nearest the true DoAs. Equation (1) can be solved
by formulating a sparsity promoting constrained nonconvex
minimization problem to estimate s and β sequentially by the
alternating method [4, 5], but with slow convergence.

Instead of solving a constrained nonconvex minimization
of (1), an unconstrained convex optimization problem, which
is composed of one smooth and two nonsmooth functions,

can be formulated. In [11], a number of primal-dual iterative
approaches for solving large-scale nonsmooth optimization
problems, such as the M+LFBF (Monotone+Lipschitz For-
ward Backward Forward) algorithm, are reviewed. In [12,13],
subgradient methods are proposed, but their complexity can
not be better than than O( 1√

k
) where k is the number of it-

erations. Alternatively, smoothing as presented in [14] can
be applied to mitigate non-smoothness of the objective func-
tion. In [15], a proximal iterative smoothing algorithm was
proposed to solve convex nonsmooth optimization problems.
In [7], the nondifferentiable function, which is approximated
by the Moreau envelope function [16], is used in the column-
wise mismatch formulation.

In this paper, an unconstrained off-grid DoA estimator
is studied. It consists of one differentiable function and
two nonsmooth ones, which are a regularized group-sparsity
penalty and an indicator function. Inspired by [14, 17], the
Nesterov smoothing methodology is used to reformulate the
group-sparsity penalty into a ”max”-structure function and
then add a strongly convex term to smooth it. We propose
two reformulations for the group-sparsity penalty since ℓ2/ℓ1
mixed norm has a two-layer norm structure. Then, the ac-
celerated proximal gradient (APG) [18] method is used on
the smoothed optimization case. Note that our first proposed
smoothing method is equivalent to the one in [7], as can
be deduced from the results of [15]. The performance and
computational efficiency of our second proposed method is
demonstrated, and compared with the interior point method
(CVX), MUSIC, M+LFBF, and CRLB.

2. PROBLEM FORMULATION

2.1. Problem Formulation of DoA Off-Grid Model

Consider a measurement model and its covariance described
by

v(t) =

K∑
k=1

s̃k(t)a(θk) + n(t) = Ã(θ)s̃(t) + n(t), (2)

Rv = E[vvH ] =
K∑

k=1

σ2
ka(θk)a(θk)

H + σ2
nI, (3)
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where v(t) ∈ CM×1 is the measurement vector, s̃k(t) is
the k-th received signal with power σ2

k at time t, θk is the
k-th unknown parameter of interest. For the direction find-
ing problem in array processing, which is the example treated
in this paper, a(θk) denotes the steering vector for direction
θk with m-th entry e−j2π dm

λ sinθk , where λ is wavelength.
Ã(θ) = [a(θ1), . . . ,a(θK)]. n(t) is i.i.d. noise term with
power σ2

n. Rv denotes the covariance matrix of v(t), which
is estimated as

∑T
t=1 v(t)v(t)

H/T in practice from T snap-
shots.

In compressed sensing, the received signal is represented
by a linear combination of a few atoms of a dictionary. The
dictionary for the array model is composed of a large num-
ber of uniformly discretized grid atoms with parameters ϕ =
[ϕ1, . . . , ϕN ]. However, in reality for the DoA estimation
problem, the target location θk might not be on the grid such
that βi = θk −ϕi if ϕi is closest to θk, ∀k; otherwise, βi = 0.
We assume that 0 ≤ |βi| ≤ r and r = |ϕi−ϕi+1|

2 is the half
size of the grid interval. By using Taylor series expansion, the
first-order approximate measurement model [19] is

ṽ(t) = (Ã(ϕ) + B̃Γ)s̄(t) + n(t), (4)

where B̃ = [∂a(ϕ1)
∂ϕ1

, . . . , ∂a(ϕN )
∂ϕN

] ∈ CM×N , β = [β1, . . . , βN ]T ,
Γ = diag(β), and s̄ is a CN×1 sparse vector. By vectorizing
the covariance of (4), we have

y = (A(ϕ) +BΓ)s+ σn1n (5)
= (A(ϕ)s+Bp) + σn1n = [A(ϕ),B]x+ σn1n,

where y = vec(Rṽ), A(ϕ) = [a(ϕ1)
H⊗a(ϕ1), . . . ,a(ϕN )H⊗

a(ϕN )] ∈ CM2×N B = [∂a(ϕ1)
∂ϕ1

⊗ ∂a(ϕ1)
∂ϕ1

, . . . , ∂a(ϕN )
∂ϕN

⊗
∂a(ϕN )
∂ϕN

] ∈ CM2×N , and s is a RN×1 sparse vector with
K nonzero terms σ2

k’s. vec(·) is the vectorizing operator,
and ⊗ denotes the Kronecker product. 1n = [eT1 , . . . , e

T
M ]T

where ei ∈ RM×1 is a all-zero vector except 1 at i-th entry.
x = [sT ,pT ]T ∈ R2N×1, and p = β ⊙ s where ⊙ denotes
the Hadamard product. Let G = [A(ϕ),B] in the following
sections. Note that if r is taken small, then s ≫ p since the
value of βk is much smaller than σ2

k at mild SNRs.
Since s,p have the same sparsity pattern, we can solve (5)

over a closed convex set X by group Lasso :

arg min
x∈X

1

2
||y −Gx||22 + η||x||2,1,

s.t. X = {x = [sT ,pT ]T : s ≥ 0,−rs ≤ p ≤ rs}.
(6)

where η > 0 is a regularization parameter, and r is defined
previously. Because the constraint set X is simple, we can
transform it into an unconstrained one by using an indicator
function:

arg min
x∈R2N×1

F (x) = {1
2
||y −Gx||22 + η||x||2,1 + ιX (x)},

(7)

where ιX (x) = 0 if x ∈ X ; otherwise, ∞. Let f(x) :=
1
2 ||y −Gx||22, h(x) := η||x||2,1, and g(x) := ιX (x). How-
ever, two nonsmooth functions in the objective makes this
problem difficult to solve efficiently.

3. ALGORITHM

In this section, we will show how to deal with problem
(7) by combining the accelerated proximal gradient algo-
rithm with the smoothing technique. We aim to smooth the
group-sparsity penalty h(x) = η||x||2,1 so that the APG
method can be used. In order to present the idea more clearly,
we introduce the notation ||x||2,1 =

∑
gi∈Ω ∥xgi∥2, where

xgi ∈ R|gi| denotes the subvector of x having the same
sparse pattern in group gi, where | · | is the cardinality of a set.
Each group gi represents a subset of index set {1, · · · , 2N}
and is disjoint from the others. Denote Ω = {g1, . . . , g|Ω|}
as the set of groups, and 2N =

∑|Ω|
i=1 |gi|. In our case,

|Ω| = N , |gi| = 2, gi = {i, i + N}, ∀i = 1, · · · , N ,
xgi = [xi, xi+N ]T ∈ R2 where xi = si and xi+N = pi.
Denote xi, si, and pi as the i-th entry of x, s, and p, respec-
tively.

3.1. Reformulation of Group-sparsity Penalty

Since h(x) is an ℓ2/ℓ1 mixed norm with two layers, i.e., the
inner is ℓ2 norm and the outer is ℓ1 norm, we can utilize the
dual norm property to reformulate it as a maximization of a
linear function over an auxiliary variable with ”simple” con-
straints in two different ways.

First, inspired by [17], by using the convex conjugate
function and the fact that the dual norm of ℓ2 norm is ℓ2
norm, ∥xgi∥2 has the max-structure as max∥ugi

∥2≤1 u
T
gixgi

where ugi ∈ R|gi| denotes an auxiliary vector. Then, h(x)
can be written as

h(x) = η
∑
gi∈Ω

∥xgi∥2 =
∑
gi∈Ω

max
∥ugi

∥2≤1
{η⟨xgi ,ugi⟩}

= max
u∈Ul2

∑
gi∈Ω

{η⟨xgi ,ugi⟩} = max
u∈Ul2

{η⟨x,u⟩}, (8)

where Ul2 = {u ∈ R2N×1 : ∥ugi∥2 ≤ 1,∀gi ∈ Ω} is the
set of vectors in the space of the Cartesian product of ℓ2 norm
unit ball. In the Nesterov smoothing technique, if a nons-
mooth convex function has the max-structure, then we have
its corresponding smoothed function

hl2
µ (x) := max

u∈Ul2

{η⟨x,u⟩ − µdl2(u)} (9)

with a smoothing parameter µ > 0. We suppose that a prox-
function dl2(u) [14] is continuous and strongly convex on
Ul2 with a strong convexity parameter σ. Its prox-center of
d(u) is denoted by u0 = argminu∈Ul2

{dl2(u)}. By the def-
inition of strongly convex, dl2(u) ≥ σ

2 ∥u − u0∥22. Since
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dl2(u) is strongly convex, hl2
µ (x) is a smooth and convex

function so that its solution is unique and its gradient can be
computed easily.

Second, inspired by by the fact that the dual norm
of ℓ1 norm is ℓ∞ norm, ∥x∥1 has the max-structure as
max∥u∥∞≤1 u

Tx, where u denotes an auxiliary vector.
Therefore, we propose a second reformulation. Let us de-
fine νi := ∥xgi∥2 and ν = [ν1, . . . , ν|Ω|]

T ∈ RN×1, and then
h(x) can be rewritten as

h(x) = η
∑
gi∈Ω

∥xgi∥2 = η

|Ω|∑
i=1

νi = η∥ν∥1. (10)

We define a new function h(ν) as

h(ν) = η∥ν∥1 = max
u∈Ul1

{η⟨ν,u⟩}, (11)

where Ul1 = {u ∈ RN×1 : ∥u∥∞ ≤ 1} is the set of vectors in
the space of ℓ∞ norm unit ball. Since it has the max-structure,
we have its corresponding smoothed function

hl1
µ (ν) := max

u∈Ul1

{η⟨ν,u⟩ − µdl1(u)} (12)

with a smoothing parameter µ > 0. Then, hl1
µ (ν) is also

a smooth and convex function if a strongly convex function
dl1(u) is chosen. Note that the dimension of x is twice as
many as ν.

Since both hl2
µ (x) and hl1

µ (ν) are smooth and convex,
their gradients can be formed by the following modified the-
orem [14]

Theorem 1. For any µ > 0, the functions hl2
µ (x) and hl1

µ (ν)
are well-defined and continuously differentiable in x and ν,
respectively. Moreover, both functions are convex and their
gradients:

∇hl2
µ (x) = ηul2 , ∇hl1

µ (ν) = ηul1 (13)

are Lipschitz continuous with the same constant Lµ = 1
µσ ,

where ul2 and ul1 are the optimal solutions to (9) and (12),
respectively.

Suppose that ∀u ∈ Ul2 ; we choose dl2(u) =
1
2∥u∥

2
2 with

a strong convexity parameter σ = 1. Then ∀gi, ul2
gi , which

is a subvector of ul2 , can be calculated as ul2
gi = S2(

η
µxgi)

where S2(·) denotes the projection operator of projecting a
vector a to a ℓ2 unit ball

S2(a) =

{ a
∥a∥2

, if ∥a∥2 > 1

a, if ∥a∥2 ≤ 1.
(14)

Similarly, ∀u ∈ Ul1 , if we choose dl1(u) =
1
2∥u∥

2
2, then ul1

can be computed as ul1 = S1(
η
µν) where S1(·) denotes the

projection operator of projecting a vector a to an ℓ∞ unit ball

S1(a) =

 1, if ai > 1, ∀i
ai, if |ai| ≤ 1, ∀i
−1, if ai < −1, , ∀i

(15)

where ai is the i-th entry of a.
Note that the dimension of ν is a half of the one of x.

Therefore, for the case of ∇hl1
µ (ν), zero-padding is per-

formed such that ∇hl1
µ (x) := [∇hl1

µ (ν)
T ,0T ]T ∈ R2N×1,

where 0 is a RN×1 zero vector, so that a new gradient
∇hl1

µ (x) can be used in the accelerated proximal gradient.
This is acceptable only when parameter r is taken small
enough. Since p ≪ s holds in this case, the value of νi
mainly comes from the contribution of s, so that zero vector
can be assigned as the partial derivative of p.

3.2. Accelerated Smoothing Proximal Gradient (ASPG)

Now, we solve two ”smoothed” versions of problem (7)

arg min
x∈Rn

{Hi(x) + ιX (x)}, i = 1 or 2. (16)

where Hi(x) := f(x) + hli
µ (x), i = 1 or 2, and then its

gradient is computed as ∇Hi(x) = ∇f(x) + ηuli .
Problem (16) is suggested to be solved by the accelerated

proximal gradient method [18] in which a proximal operator
is used:

proxι(y) = arg min
x∈Rn

{1
2
∥y − x∥2 + ι(x)}. (17)

In fact, the proximal operator proxιX (y) of indicator function
ιX (x) is the projection operator onto the set X , ΠX (x).

The ASPG method is summarized in the Algorithm 1. We
also show its convergence rate by the following theorem:

Theorem 2. Suppose xk is the k-th iterative solution in Algo-
rithm 1, and x∗ is the optimal solution of problem (7). Assume
that ϵ-approximation is required, i.e., F (xk)− F (x∗) ≤ ϵ. If
we set µ = ϵ

2Di
, where Di = maxu∈Uli

dli(u), then

F (xk)− F (x∗) ≤ ϵ

2
+

2(Lf + 2Di

ϵσ )∥x
0 − x∗∥2

(k + 1)2
, (18)

where Lf is Lipschitz continuous gradient parameter of f(x).
The number of iteration k has an upper bound by√

4∥x0 − x∗∥2
ϵ

(Lf +
2Di

ϵσ
)− 1 (19)

Since space is limited, the proof detail will be provided
in the journal version of this paper. This theorem implies its
convergence rate is O( 1k ). We cannot achieve convergence
rate O( 1

k2 ) of accelerated proximal gradient method due to
the smoothing process, but better than the subgradient meth-
ods with O( 1√

k
) [12].

4. NUMERICAL EXAMPLE

In the following numerical example of the off-grid DoA es-
timation, the proposed two accelerated smoothing proximal
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Algorithm 1 Accelerated Smoothing Proximal Gradient
Input: x0 = x1 = 0; γ = 0.5; µ = 10−8; step-size α0 = 1;
Step k: (k ≥ 1) Let α := αk−1. Compute

wk+1 = xk + k
k+3 (x

k − xk−1)
1: repeat
2: Compute ∇f(wk+1) = GH(Gwk+1 − y),
3: Compute ∇hli

µ (w
k+1) = ηul2 if i = 2,

4: Compute ∇hli
µ (w

k+1) = ηul1 if i = 1,
5: z = ΠX (wk+1 − α∇f(wk+1)− α∇hli

µ (w
k+1)),

6: Break if Fi(z) ≤ F̂α
i (z,w

k+1) = Fi(w
k+1) +

(∇Fi(w
k+1))T (z−wk+1) + 1

2α∥z−wk+1∥22,
7: Update α := γα,
8: return αk := α, xk+1 := z

Note 1: ul2 is composed of ul2
gi = S2(

η
µw

k+1
gi ),∀gi.

Note 2: ul1 = [S1(
η
µν)

T ,0T ]T where νi = ∥wk+1
gi ∥2, νi :

i-th entry of ν

SNR (dB)
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Fig. 1. RMSE of DoA estimation versus SNR.

gradient methods are designated as ASPG-L2 (using hl2
µ (x))

and ASPG-L1 (using ∇hl1
µ (ν)). We also solve problem (6)

by using CVX packages. The CVX method can be viewed
as a benchmark, which is used to evaluate the estimation per-
formance degradation caused by smoothing in the proposed
methods. The estimation errors of these methods are com-
pared with the same for the MUSIC estimator, M+LFBF and
the CRLB. Consider K = 2 source signals from DoAs θ =
[13.2220, 28.6022] degree impinging on a uniform linear ar-
ray of M = 8 sensors with half-wavelength interelement
spacing. The two sources are randomly generated with nor-
mal distribution of zero mean and variance σ2

s . The noise
term is i.i.d. AWGN with zero mean and variance σ2

n. We
use one hundred snapshots to estimate the covariance matrix.
The size N of search grid is set to 360 with r = 0.25 de-
gree, which is used for all methods. In the ASPG method,

DOA
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Fig. 2. Power Spectrum versus DoA.

dli(u) = 1
2∥u∥

2
2, ∀i, the decreasing factor is γ = 0.5, and

smoothing parameter is chosen as µ = 10−8. The root-mean-
square-error (RMSE) of DoA estimation is (E[ 1K ∥θ̂−θ∥22])

1
2 .

One hundred realizations are performed at each SNR.
In Figure 1, the RMSE of CVX and the proposed meth-

ods are almost the same and better than MUSIC and M+LFBF
at low SNRs. At high SNRs, the performance of ASPG-L1,
CVX, and MUSIC approach CRLB, but not ASPG-L2. The
reason is that the sparse property of group-sparsity penalty
∥xgi∥2 is lost during the smoothing process by only using the
property that the dual norm of ℓ2 norm is also ℓ2 norm so that
sparsity is not promoted in this way. In Figure 2, the estimated
power spectrum of ASPG methods is presented at SNR = 0
dB. Due to the smoothing process, both have lost their spar-
sity. However, the two peaks of ASPG-L1 are more separated
than ASPG-L2. In other words, ASPG-L1 estimator owns
higher DoA resolution.

We also have verified that the computational efficiencies
of the proposed methods are better than the CVX method. At
SNR = 0 dB, the running time at each realization of ASPG-
L2, and ASPG-L1 are 2.54s and 2.74s, which are faster than
the CVX method with 22.51s, and M+LFBF with 5.59s.

5. CONCLUSION

Two ASPG methods were proposed for the estimation of off-
grid DoAs using a sparse model for the observation. The
group-sparsity penalty is reformulated and smoothed by the
Nesterov smoothing technique so that its gradient can be cal-
culated easily. Then, the accelerated proximal gradient is
used to solve the unconstrained optimization problem with
the smoothed objective functions plus only one nonsmooth
function. The performance and computational efficiencies of
the proposed methods were verified by a numerical example.
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