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ABSTRACT

Detecting the sinusoidal order is a prerequisite step for para-
metric multidimensional sinusoidal frequency estimation
methods, whose applications range from radar and wireless
communications to nuclear magnetic resonance spectroscopy.
Although the Bayesian information criterion (BIC) has been
commonly applied for model order selection, its application
to sinusoidal order estimation is recent. By means of estima-
tion of Fisher information matrix, we extend the 1-D BIC to
multidimensional case for multidimensional sinusoidal order
selection. The multidimensional BIC is shown in simula-
tions to outperform the state-of-the-art algorithms in terms of
probability of correct detection.

Index Terms— Bayesian information criterion, model or-
der selection, maximum likelihood estimation, frequency es-
timation, multidimensional signal processing

1. INTRODUCTION

Multidimensional sinusoidal frequency estimation [1] has
numerous applications ranging from multiple-input multiple-
output radar imaging [2], channel estimation in wireless
communication systems [3] to nuclear magnetic resonance
spectroscopy [4]. Parametric approaches to N -dimensional
(N -D) frequency estimation, where N ≥ 2, such as N -D
ESPRIT and its variants [5–7], N -D multiple signal classifi-
cation (MUSIC) [8], multidimensional folding (MDF) [9,10],
improved MDF [11], and N -D rank reduction estimator [12]
provide high resolution estimation performance. However,
they rely on the a priori knowledge of the number of signals,
which is often unknown and must be estimated from the noisy
multidimensional measurements. As a result, estimating the
number of complex sinusoids from the N -D data, also known
as source enumeration, is a crucial step in order to achieve
accurate frequency estimation.

The Bayesian information criterion (BIC) rule has been

widely used for detecting the number of signals [13,14]. Such
a criterion is composed of two terms. The first one is the neg-
ative log-likelihood function and the second one is a penal-
ty term for punishing overestimating the number of signals.
However, the expression presented in [14] is only derived for
1-D BIC rule.

In this paper, we propose the multidimensional (N -D)
BIC approach to estimate the model order in multidimension-
al sinusoisal data.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the data model. Section 3 shows the proposed
N-D BIC scheme. In Section 4 the simulation results are pre-
sented and discussed. Finally, Section 5 concludes the paper.

2. DATA MODEL

The noisy observations are modeled as a superposition of R0

undamped N -D complex sinusoids (cisoids) sampled on an
N -D grid of size I1 × · · · × IN :

yi1,i2,··· ,iN =
R0∑
r=1

αre
jϕr

N∏
n=1

ej(in−1)µ(n)
r + ni1,i2,··· ,iN ,

in = 1, 2, . . . , In, n = 1, 2, . . . , N,
(1)

where αr, ϕr and
{
µ
(n)
r

}N

n=1
denote the amplitude, phase

and multidimensional frequency of the r-th cisoids, and
ni1,i2,··· ,iN models the i.i.d. white Gaussian noise inherent in
the measurement process.

Given the observed data tensor Y ∈ CI1×···×IN , our goal
is to estimate its number of cisoids R0.

For N = 1 case, we obtain the original 1-D sinusoidal
signal model as

yi =

R0∑
r=1

αre
jϕre(i−1)jµr + ni, i = 1, 2, . . . , I. (2)

Note that the 1-D BIC scheme in [14] has been proposed
based on (2).
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BICND(R) = 2I1I2 · · · IN log
∑

i1,i2,...,iN

∣∣∣∣∣yi1,i2,...,iN −
R∑

r=1

α̂re
jϕ̂r

N∏
n=1

ej(in−1)µ̂(n)
r

∣∣∣∣∣
2

+[(N + 4)R+ 1] log (I1I2 · · · IN ) (3)

3. PROPOSED MULTIDIMENSIONAL BAYESIAN
INFORMATION CRITERION

In this section, we derive the proposed multidimensional
Bayesian information criterion (N -D BIC) rule and present
the proposed rule for multidimensional sinusoidal order se-
lection.

The N -D BIC selects the candidate value R for the model
order that minimizes Eq. (3), whose derivation is described

in Subsection 3.1. In (3),
{
α̂r, ϕ̂r, µ̂

(1)
r , µ̂

(2)
r , . . . , µ̂

(N)
r

}R

r=1
are the Maximum Likelihood (ML) estimates of the real am-
plitude, phase and multidimensional frequencies. Note that
the N -D BIC in (3) generalizes the 1-D BIC rule (Eq. (89)
of [14]).

3.1. Mathematical derivation of the N -D BIC

For each candidate number of signals R, we define

θ =

{{
αr, ϕr, µ

(1)
r , µ(2)

r , . . . , µ(N)
r

}R

r=1
, σ2

}
∈ R[(N+2)R+1]×1

(4)
as the real-valued parameter vector.

Let θ̂ be the ML estimate of θ. According to [14], when
the probability density function of θ, p (θ) satisfies: (i) p (θ)
is flat around θ̂. (ii) p (θ) is independent of the number of
data samples I = I1I2 · · · IN , the BIC is stipulated by (Eq.
(84) of [14])

BICND(R) = −2 log p
(
Y|θ̂R

)
+ log

∣∣∣Ĵ∣∣∣ , (5)

where

Ĵ = −∂2 log p (Y|θ)
∂θ∂θT

∣∣∣∣
θ=θ̂R

∈ R[(N+2)R+1]×[(N+2)R+1], (6)

∣∣∣Ĵ ∣∣∣ is the determinant of Ĵ and p
(
y|θ̂R

)
is the likelihood

function.
Specially, its 1-D case is expressed as [14]

BIC1D(R) = −2 log p
(
y|θ̂R

)
+ (5R+ 1) log I. (7)

Since the noise samples are i.i.d. Gaussian with variance
of σ2, the entries in Y follow the following distribution:

p (Y |θ)

=
∏

i1,i2,...,iN

1√
2πσ2

exp

{
−|yi1,i2,...,iN

−xi1,i2,...,iN
(θ)|2

2σ2

}
,

(8)
where

xi1,i2,...,iN (θ) =

R∑
r=1

αre
jϕr

N∏
n=1

ej(in−1)µ
(n)
r . (9)

Defining

ϵi1,i2,...,iN (θ) = yi1,i2,...,iN − xi1,i2,...,iN (θ), (10)

the negative log-likelihood is
− log p (Y |θ)

=
1

2σ2

∑
i1,i2,...,iN

|ϵi1,i2,...,iN (θ)|2 + 1

2
I1I2 · · · IN log σ2,

(11)

where we have ignored the irrelevant constant.
Since it is less convenient to estimate Ĵ , we instead esti-

mate its expected value, the so-called Fisher information ma-
trix (FIM) defined as

J = E
{
−∂2 log p (Y |θ)

∂θ∂θT

}
. (12)

The rationale of using using FIM as a surrogate of Ĵ will be
clear at the end of this section.

The first-order partial derivative of − log p (Y |θ) with re-
spect to θk is

− ∂ log p (Y|θ)
∂θk

=− 1

σ2

∑
i1,i2,...,iN

Re

{
ϵi1,i2,...,iN (θ)

∂x∗
i1,i2,...,iN (θ)

∂θk

} (13)

for θk ∈
{
αr, ϕr, µ

(1)
r , µ

(2)
r , . . . , µ

(N)
r

}R

r=1
, and

− ∂ log p (Y|θ)
∂σ2

=− 1

2σ4

∑
i1,i2,...,iN

|ϵi1,i2,...,iN (θ)|2 + 1

2σ2
I1I2 · · · IN .

(14)

The superscript ∗ in (13) denotes the complex conjugate.
We now proceed to calculate the expected value of

the second-order partial derivatives of − log p (Y |θ). For

θk, θℓ ∈
{
αr, ϕr, µ

(1)
r , µ

(2)
r , . . . , µ

(N)
r

}R

r=1
, we have

E
{
−∂2 log p (Y|θ)

∂θℓ∂θk

}

=− 1

σ2 E

 ∑
i1,i2,...,iN

Re

{
∂ϵi1,i2,...,iN (θ)

∂θℓ

∂x∗
i1,i2,...,iN

(θ)

∂θk

+ϵi1,i2,...,iN (θ)
∂x∗

i1,i2,...,iN
(θ)

∂θℓ∂θk

}}
.

(15)

Since ϵi1,i2,...,iN (θ) is independent of x∗
i1,i2,...,iN

and that
E {ϵi1,i2,...,iN (θ)} = 0 for R ≥ R0, we have

E
{
ϵi1,i2,...,iN (θ)

∂x∗
i1,i2,...,iN

(θ)

∂θℓ∂θk

}
= 0. (16)
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Therefore, we can write Eq.(15) as

E
{
−∂2 log p (Y|θ)

∂θℓ∂θk

}

=
1

σ2 E

 ∑
i1,i2,...,iN

Re

{
∂xi1,i2,...,iN (θ)

∂θℓ

∂x∗
i1,i2,...,iN

(θ)

∂θk

} .

(17)
By substituting

∂xi1,i2,...,iN (θ)
∂αs

= ejϕs

N∏
n=1

ej(in−1)µ(n)
s ,

∂xi1,i2,...,iN (θ)
∂ϕs

= jαse
jϕs

N∏
n=1

ej(in−1)µ(n)
s ,

∂xi1,i2,...,iN (θ)
∂µn

s
= j(in − 1)αse

jϕs

N∏
n=1

ej(in−1)µ(n)
s

(18)
into (17), we obtain Eq. (19)-(24). In particular

E
{
−∂2 log p (Y |θ)

∂α2
r

}
=

1

σ2
I1I2 · · · IN , (25)

E
{
−∂2 log p (Y |θ)

∂ϕ2
r

}
=

α2
r

σ2
I1I2 · · · IN , (26)

E

{
−∂2 log p (Y |θ)

∂µ
(n)2

r

}
=

α2
r

σ2

(In − 1)(2In − 1)

6
I1I2 · · · IN .

(27)

In addition, the following expression holds

E
{
−∂2 log p (Y|θ)

∂θi∂σ2

}
= 0, (28)

for θi ∈
{
αr, ϕr, µ

(1)
r , µ

(2)
r , . . . , µ

(N)
r

}R

r=1
, and

E
{
−∂2 log p (Y|θ)

∂σ2∂σ2

}
=

1

2σ4
I1I2 . . . IN , (29)

for θi = σ2. Note that in deriving Eqs. (28) and (29), we
have used the fact that E {ϵi1,i2,...,iN (θ)} = 0 for R ≥ R0

and E
{
|ϵi1,i2,...,iN (θ)|2

}
= σ2 when R = R0, respectively.

By collecting the results from (19)-(29), based on Lem-
ma 3.1 and by assuming that the N -D sinusoidal signals have
a distinct (unique) frequency in all N modes, we have

K−1JK−1 = diag {c}+O
(
1(N+2)R+1

I

)
(30)

where
{αr}Rr=1︷ ︸︸ ︷ {ϕr}Rr=1︷ ︸︸ ︷

{{
µ
(n)
r

}R

r=1

}N

n=1︷ ︸︸ ︷ σ2︷︸︸︷

K =



√
IIR √

IIR
I1
√
IIR

. . .
IN

√
IIR √

I


,

Lemma 3.1. For any positive integers In, n = 1, 2, . . . , N
and any angles ω(n), ϕ ∈ [−π, π), n = 1, 2, . . . , N , the fol-
lowing equalities hold

∑
i1,i2,...,iN

cos

(
N∑

n=1

(in − 1)ω(n) + ϕ

)

= cos

(
N∑

n=1

In − 1

2
ω(n) + ϕ

)
N∏

n=1

sin In
2
ω(n)

sin 1
2
ω(n)

∑
i1,i2,...,iN

sin

(
N∑

n=1

(in − 1)ω(n) + ϕ

)

= sin

(
N∑

n=1

In − 1

2
ω(n) + ϕ

)
N∏

n=1

sin In
2
ω(n)

sin 1
2
ω(n)

In∑
in=1

(in − 1) cos (in − 1)ω(n)

=
(I − 1) sin

[
(In − 1/2)ω(n)

]
2 sin(ω(n)/2)

−
sin2

(
In−1

2
ω(n)

)
2 sin2(ω(n)/2)

In∑
in=1

(in − 1) sin (in − 1)ω(n)

=
sin(In − 1)ω(n)

4 sin2(ω(n)/2)
− (I − 1) cos(In − 1/2)ω(n)

2 sin(ω(n)/2)
.

with IR being the identity matrix of size R × R, c =
1
σ2

[
11×R α2 I21/3α

2 · · · I2N/3α2 1/(2σ4)
]

∈ R1×[(N+2)R+1], with α2 :=
[
α2
1 α2

2 · · · α2
R

]
, and

O
(
1(N+2)R+1/I

)
denotes an [(N + 2)R+ 1]×[(N + 2)R+ 1]

matrix in which all entries approach zero as I → +∞.
According to [14, 15], under mild conditions, we have

that
K−1ĴK−1 ≈ K−1JK−1. (31)

Combining (30) and (31) yields∣∣∣Ĵ∣∣∣ ≈ c
∣∣K2

∣∣ = c · I(N+4)R+1, (32)

where c = |diag {c}| is a constant independent of R.
Hence, by substituting (32) into (5), we arrive at (3).

4. SIMULATION RESULTS

The data are generated according to model (1). The phase ϕr

and frequencies µ
(n)
r are drawn from a uniform distribution

in [−π, π]. The amplitudes αr are drawn from an exponen-
tial distribution with mean 1. The entries of the noise tensor
N are i.i.d. drawn from N (0, σ2). The signal-to-noise ratio
(SNR) is defined as

SNR =
∥Y ∥2F

σ2
∏N

n=1 In
.

The noise power σ2 is scaled to obtain different SNRs.
For each SNR, 100 independent Monte Carlo runs have been
conducted. The performance measure is the probability of
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E
{
−∂2 log p (Y |θ)

∂αs∂αr

}
=

1

σ2

∑
i1,i2,...,iN

cos

(
N∑

n=1

(in − 1)
(
µ(n)
s − µ(n)

r

)
+ (ϕs − ϕr)

)
, (19)

E
{
−∂2 log p (Y |θ)

∂ϕs∂αr

}
= −αs

σ2

∑
i1,i2,...,iN

sin

(
N∑

n=1

(in − 1)
(
µ(n)
s − µ(n)

r

)
+ (ϕs − ϕr)

)
, (20)

E

{
−∂2 log p (Y |θ)

∂µ
(n′)
s ∂αr

}
= −αs

σ2

∑
i1,i2,...,iN

(in′ − 1) sin

(
N∑

n=1

(in − 1)
(
µ(n)
s − µ(n)

r

)
+ (ϕs − ϕr)

)
, (21)

E
{
−∂2 log p (Y |θ)

∂ϕs∂ϕr

}
=

αsαr

σ2

∑
i1,i2,...,iN

cos

(
N∑

n=1

(in − 1)
(
µ(n)
s − µ(n)

r

)
+ (ϕs − ϕr)

)
, (22)

E

{
−∂2 log p (Y |θ)

∂µ
(n′)
s ∂ϕr

}
=

αsαr

σ2

∑
i1,i2,...,iN

(in′ − 1) cos

(
N∑

n=1

(in − 1)
(
µ(n)
s − µ(n)

r

)
+ (ϕs − ϕr)

)
, (23)

E

{
−∂2 log p (Y |θ)

∂µ
(n2)
s ∂µ

(n1)
r

}
=

αsαr

σ2

∑
i1,i2,...,iN

(in1 − 1) (in2 − 1) cos

(
N∑

n=1

(in − 1)
(
µ(n)
s − µ(n)

r

)
+ (ϕs − ϕr)

)
. (24)

correct detection (PoD), i.e. Pr
(
R̂ = R

)
, averaged over sig-

nal and noise realizations.
We compare the N -D BIC with the following benchmark

algorithms: N -D ESTER [16] and its variant [17] 1, general-
ized N -D MDL [18], which employs both the n- and multi-
mode eigenvalues associated with the generalized unfolding
of tensor data and is shown to outperform its predecessor
in [19], and MDF-ESTER [20] which combines the multi-
dimensional folding technique with ESTER.

In Figure 1, we consider a 3-D array of sizes I1 = 5, I2 =
8, I3 = 11. The signals number is R = 3. Note that the N -D
BIC noticeably outperforms all other algorithms in the whole
SNR range.

In Figure 2, we increase the cisoid number to R = 10.
The BIC approach still performs the best. Note that N -D ES-
TER [16] and N -D ESTER I [17] totally fail since the cisoid
number exceed the maximum number of signals they are able
to detect.

−20 −10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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P
r
(R̂

=
R
)

 

 

Generalized N-D MDL
N-D ESTER [16]

N-D ESTER I [17]

MDF-ESTER
Proposed N-D BIC

Fig. 1. PoD versus SNR. I1 = 5, I2 = 8, I3 = 11 and R = 3.

1Two versions of the N -D ESTER are proposed in [17]. Since the N -D
ESTER II is not applicable to the single-snapshot model considered in the
paper, it is not included for comparison.
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=
R
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Generalized N-D MDL
N-D ESTER [16]

N-D ESTER I [17]

MDF-ESTER
Proposed N-D BIC

Fig. 2. PoD versus SNR. I1 = 5, I2 = 8, I3 = 11 and R =
10.

5. CONCLUSION AND FUTURE WORK

The 1-D BIC is extended to multi-dimensional case for sinu-
soidal order selection, which considerably outperforms exist-
ing algorithms in detection accuracy. Since the BIC rule is
asymptotically equivalent to the maximum a posteriori prob-
ability rule, it is consistent, i.e. the probability of correct de-
tection goes to one as the sample size goes to infinity. While
the sample size is well defined for the 1-D sinusoidal signal
model it is not for the N -D case. As a future work, we plan to
investigate the exact condition (min (I1, I2, . . . , IN ) → +∞
or I1I2 · · · IN → +∞) under which the N -D BIC is con-
sistent. Besides, in this work we assume that the signal is
uniformly sampled. In case the signal is not uniformly sam-
pled but the spacing errors are small, the derived N -D BIC
still applies as long as equality (30) holds. Another work is
therefore to study the conditions (regarding the distribution of
spacing errors) under which (30) holds.
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