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Abstract—Joint EigenValue Decomposition (JEVD) algorithms are
widely used in many application scenarios. These algorithms can be
divided into different categories based on the cost function that needs to
be minimized. Most of the frequently used algorithms in the literature use
indirect least square (LS) criteria as a cost function. In this work, we per-
form a first order perturbation analysis for the JEVD algorithms based
on the indirect LS criterion. We also present closed-form expressions
for the eigenvector and eigenvalue matrices. The obtained expressions
are asymptotic in the signal-to-noise ratio (SNR). Additionally, we use
these results to obtain a statistical analysis, where we only assume that
the noise has finite second order moments. The simulation results show
that the proposed analytical expressions match well to the empirical
results of JEVD algorithms which are based on the LS cost function.

Index Terms—Perturbation analysis, joint eigenvalue decomposition.

I. INTRODUCTION

The problem of Joint EigenValue Decomposition (JEVD) of a
set of jointly diagonalizable matrices is often encountered in many
different applications such as independent component analysis [1],
the Canonical Polyadic (CP) decomposition [2], [3], and in achieving
automatic pairing in multidimensional harmonic retrieval problems
[4]. A perturbation analysis that describes the reconstruction error is
of major importance when analyzing the performance of JEVD (or
JEVD based) algorithms. Many JEVD algorithms such as Sh-Rt [5],
JDTM [6], coupled JEVD [7], JET-O and JET-U [8] have been inves-
tigated in the literature and have been compared in [7], [8]. Moreover,
a perturbation analysis for the classical eigenvalue decomposition has
already been in performed in [9], but to the best of our knowledge, an
analytical perturbation analysis for the aforementioned JEVD algo-
rithms is not present in the literature. In this work we provide a first
order perturbation analysis of the above mentioned algorithms. The
results show that the analytical expressions match the performance of
empirical simulations in the high signal-to-noise ratio (SNR) regime.

Computing the JEVD of a given set of K jointly diagonalizable
matrices Sk ∈ CM×M , ∀k = 1, 2, . . . ,K consists of finding the
matrix T such that

Sk = T ·Dk · T−1, ∀k = 1, 2, . . . ,K, (1)

where T ∈ CM×M is an invertible matrix and Dk ∈ CM×M are
diagonal matrices for k = 1, 2, . . . ,K. This problem should not
be confused with the classical problem of Joint Diagonalization
by Congruence (JDC), for which T−1, in (1), is replaced by TH.
Furthermore, in the presence of noise, let Ŝk = Sk+∆Sk ∈ CM×M

be a noisy observation of Sk, where ∆Sk ∈ CM×M can be
modeled as a random perturbation matrix. Note that the set of
noisy observations is not fully diagonalizable, and therefore, a
JEVD algorithm obtains estimates T̂ = T + ∆T ∈ CM×M and
D̂k = Dk + ∆Dk ∈ CM×M (with ∆Dk being a diagonal
perturbation matrix) that approximately, but not fully, diagonalize
the set of matrices Ŝk, ∀k = 1, 2, . . . ,K as

Ŝk ≈ T̂ · D̂k · T̂
−1
, ∀k = 1, 2, . . . ,K.

Most of these JEVD algorithms are based on Jacobi-like updates
(sweeping procedure) and look for a factorized form of the updating
matrix. First, an algorithm based on the polar decomposition,
referred as Sh-Rt, was introduced in [5]. The same factorization is
also at the heart of the JUST and the JDTM algorithms [6] while
JET-U and JET-O resort to the LU factorization [8]. Therefore, the
algorithms such as JDTM, Sh-Rt, and coupled JEVD aim to find
the T̂ that minimizes the indirect LS cost function

J =
K∑

k=1

∥∥∥Off
(
T̂

−1 · Ŝk · T̂
)∥∥∥2

F
, (2)

where ‖·‖2F denotes the Frobenious norm of a matrix, and the
Off(·) operator is defined as Off(X) = X − diag(diag(X)), with
the diag(.) operator defined as in Matlab. This implies that, ideally,
these algorithms estimate T iteratively by solving

T̂ = argmin
ˆT

(
K∑

k=1

∥∥∥Off
(
T̂

−1 · Ŝk · T̂
)∥∥∥2

F

)
, (3)

and the estimates D̂k are computed as

D̂k = Ddiag
(
T̂

−1 · Ŝk · T̂
)
, ∀k = 1, 2, . . . , K, (4)

where the Ddiag(·) operator is defined as Ddiag(X) =
diag(diag(X)). Therefore, we refer to these algorithms which
are based on the indirect LS cost function as indirect LS. In this
work, we focus on the perturbation analysis for these indirect LS
algorithms. Since other algorithms such as JET-O and JET-U [8] are
not based on the indirect LS cost function, a separate perturbation
analysis would be required for these algorithms. However, we also
compare our results with these algorithms.

II. PERTURBATION ANALYSIS FOR INDIRECT LEAST SQUARES
ALGORITHMS

Let ∆T be the perturbation present in T̂ . Therefore, we can write
T̂ = T +∆T . With this setup we can expand the term T̂

−1 · Ŝk · T̂ ,
inside equation (2), to

T̂
−1 · Ŝk · T̂ =

= (T + ∆T )
−1 · (Sk + ∆Sk) · (T + ∆T )

=
(
T

−1 − T
−1 ·∆T · T−1

)
· (Sk + ∆Sk) · (T + ∆T ) +O(∆

2
)

= T
−1 · Sk · T + T

−1 ·∆Sk · T
+ T

−1 · Sk ·∆T − T
−1 ·∆T · T−1 · Sk · T +O(∆

2
)

= Dk + T
−1 ·∆Sk · T + T

−1 · Sk ·∆T − T
−1 ·∆T ·Dk +O(∆

2
).
(5)

Note that, we use the assumption that all the error terms (i.e. ∆T ,
∆Sk, ∆Dk) are small enough, such that the second order terms (and
higher) inside O(∆2) are negligible. Furthermore, since Off (Dk) =
0, we use equation (5) to compute

Off
(
T̂

−1 · Ŝk · T̂
)

=

= Off
(
T

−1 ·∆Sk · T
)

+ Off
(
T

−1 · Sk ·∆T
)

−Off
(
T

−1 ·∆T ·Dk

)
+O(∆

2
). (6)
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Fig. 1: (1a): Median J in equation (2) vs. SNR, for M = 4 and K = 20. (1b): Median J in equation (2) vs. matrix set size K, for M = 4
and SNR = 90 dB. (1c): Median J in equation (2) vs. matrix size M , for K = 20 and SNR = 90 dB.

Now we can vectorise the result from equation (6) to find

vec
{

(Off
(
T̂

−1 · Ŝk · T̂
)}

=

= Q · vec
{
T

−1 ·∆Sk · T
}

+ Q · vec
{
T

−1 · Sk ·∆T
}

−Q · vec
{
T

−1 ·∆T ·Dk

}
+O(∆

2
)

= Q ·
(
T

T ⊗ T
−1
)
· vec {∆Sk}+ Q ·

(
I ⊗ T

−1 · Sk

)
· vec {∆T }

−Q ·
(
Dk ⊗ T

−1
)
· vec {∆T }+O(∆

2
), (7)

where vec {·} is the vectorization operator, ⊗ denotes the Kronecker
product, and Q ∈ {0, 1}M

2×M2

is a selection matrix that satisfies
the relation vec {(Off (X)} = Q · vec {X} and can be constructed
as Q = IM2 − diag (vec {IM}).

Let us define B0 ∈ CM2×M2

, nk ∈ CM2×1, Ak ∈ CM2×M2

,
and w ∈ CM2×1 as

B0 = Q ·
(
T

T ⊗ T
−1
)

(8)

nk = vec {∆Sk} (9)

Ak = Q ·
[(

IM ⊗ T
−1 · Sk

)
−
(
Dk ⊗ T

−1
)]

(10)

w = vec {∆T } . (11)

This notation allows us to reformulate equation (7) as

vec
{

Off
(
T̂

−1 · Ŝk · T̂
)}

= B0 · nk + Ak ·w +O(∆
2
). (12)

Now, by substituting the values of equation (12) in equation (2) and
neglecting the terms that contain O(∆2), we approximate the indirect
LS cost function to

J =
K∑

k=1

∥∥∥Off
(
T̂

−1 · Ŝk · T̂
)∥∥∥2

F
≈

K∑
k=1

‖B0 · nk + Ak ·w‖2

= ‖B · n + A ·w‖2 , (13)

where

A =


A1

A2

...
AK

 , B =


B0 0 · · · 0
0 B0 · · · 0

...
...

...
...

0 0 · · · B0

 , n =


n1

n2

...
nK

 . (14)

Since we have approximated equation (2) by a conventional LS prob-
lem in equation (13), the w = wopt that approximately minimizes
J is given by

wopt = −A+ ·B · n, (15)

where the operator + denotes the Moore-Penrose pseudo-inverse of a
matrix. Moreover, let Rk be defined as Rk ,

(
IM ⊗Dk · T−1

)
−

(
Dk ⊗ T−1

)
. Note that Rk is a block-diagonal matrix with M

blocks, each of size M ×M , where, due to the diagonal structure
of Dk, the m-th row in the m-th block is zero (for all m =
1, 2, . . . ,M ). Therefore Rk has M all-zero rows at 1,M+2, 2·M+

3, . . . ,M2. Consequently, A ∈ CM2·K×M2

is rank-deficient, having
a column-rank of M · (M − 1) rather than M2. This is due to the
fact that each Ak = Q ·Rk has the same M -dimensional null-space
(which depends on T ), so that the concatenation of these matrices
does not improve the rank of A, which shares the same null-space
as all Ak’s. Consequently, wopt in equation (15) is not a unique
minimizer of the LS criterion, since any vector v in the null space of
A can be added to wopt in forming a new w = wopt + v with the
same resulting off-diagonal terms B · n + A ·w. Nevertheless, we
arbitrarily select wopt of (15) as our solution, which is also known to
be the minimum-norm solution (i.e., the vector w with the minimum
2-norm among all vectors minimizing the LS criterion), thereby re-
flecting the minimum possible perturbation of T (under the high SNR
assumption). Furthermore, we can analytically approximate the ∆T
that minimizes the indirect LS cost function J by solving equation
(3), with the value of wopt obtained in equation (15), to obtain

∆T ≈ unvec
M×M

{wopt} , (16)

where unvecM×M {·} denotes the inverse of the vec {·} operator1.
Moreover, substituting equation (5) into (4) leads to

Dk + ∆Dk = Ddiag
(
T̂

−1 · Ŝk · T̂
)
≈

≈ Dk + Ddiag
(
T

−1 ·∆Sk · T
)

+ Ddiag
(
T

−1 · Sk ·∆T − T
−1 ·∆T ·Dk

)
, (17)

We now rewrite the last term of equation (17) as

Ddiag
(
T

−1 · Sk ·∆T − T
−1 ·∆T ·Dk

)
=

= unvec
M×M

{
P · vec

(
T

−1 · Sk ·∆T − T
−1 ·∆T ·Dk

)}
= unvec

M×M

{
P ·

[(
IM ⊗ T

−1 · Sk

)
−
(
Dk ⊗ T

−1
)]
· vec (∆T )

}
= unvec

M×M

{
P ·

[(
IM ⊗Dk · T−1

)
−
(
Dk ⊗ T

−1
)]
· vec (∆T )

}
= unvec

M×M
{P ·Rk · vec (∆T )} , (18)

where P is a selection matrix defined as P = diag(vec{IM}).
Furthermore, the structure present in Rk as discussed above ensures
that P · Rk is always equal to zero. This leads to equation (18)
being equal to zero and, therefore, equation (17) leads to

∆Dk ≈ Ddiag
(
T

−1 ·∆Sk · T
)
. (19)

1If x = vec {X}, then X = unvecM×M {x} ∈ CM×M .
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Fig. 2: (2a): Median rD in equation (25) vs. SNR, for M = 4 and K = 20. (2b): Median rD in equation (25) vs. matrix set size K, for
M = 4 and SNR = 90 dB. (2c): Median rD in equation (25) vs. matrix size M , for K = 20 and SNR = 90 dB.

III. PERTURBATION ANALYSIS USING NOISE STATISTICS

A. General Expressions

Let Rnn ∈ CK·M2×K·M2

and R
(k)
nn ∈ CM2×M2

be the cor-
relation matrices of n and nk (in Eqs. (14) and (9)), given by
Rnn , E

{
n · nH

}
and R

(k)
nn , E

{
nk · nH

k

}
, where E{·} denotes

the expected value operator. Using this definition, and equations (15)
(16), we find

E
{
‖∆T ‖2F

}
= E

{
w

H
opt ·wopt

}
= E

{
Tr
(
wopt ·wH

opt

)}
= E

{
Tr
(
A

+ ·B · n · nH ·BH ·A+H
)}

= Tr
(
A

+ ·B ·Rnn ·BH ·A+H
)
, (20)

where Tr(·) denotes the trace operator. In the same way, we
derive a closed-form expression for E

{
‖∆Dk‖2F

}
by using

the vectorization operation on ∆Dk in equation (19), leading
to vec {∆Dk} = P ·

(
TT ⊗ T−1

)
· nk = Ck · nk, where

Ck , P ·
(
TT ⊗ T−1

)
. Therefore, we get

E
{
‖∆Dk‖2F

}
= E

{
vec (∆Dk)

H · vec (∆Dk)
}

= Tr
(
Ck ·R(k)

nn ·C
H
k

)
. (21)

B. Special Case of Uncorrelated Noise
In this section we simplify the expressions, from equations (20)

and (21) for the special case of uncorrelated noise with equal variance
σ2. In this simplified scenario (which may not be realistic in practice,
but is convenient to check our results in the simulation), the noise
correlation matrix Rnn is given by Rnn = σ2 · IM2·K . Therefore,
E
{
‖∆T ‖2F

}
in equation (20) is simplified to

E
{
‖∆T ‖2F

}
= σ

2 ·
∥∥∥A+ ·B

∥∥∥2

F
. (22)

In the same manner, E
{
‖∆Dk‖2F

}
in equation (21) is simplified to

E
{
‖∆Dk‖2F

}
= σ

2 · ‖Ck‖2F . (23)

IV. SIMULATION RESULTS

In this section, we corroborate the analytical results obtained
in the previous sections using empirical results. We evaluate the
performance in different scenarios, e.g., by varying the SNR, the
matrix size M , and the size K of the matrix set. Furthermore, these

scenarios are simulated over 1000 independent realizations using
these parameters:

1) SNR: During all these realizations the matrix size is fixed to
M = 4 and the matrix set size is fixed to K = 20, while the
SNR varies.

2) Matrix Size M : During all these realizations the SNR is fixed
to 90 dB and the matrix set size is fixed to K = 20, while
the matrix size M varies.

3) Matrix Set Size K: During all these realizations the SNR is
fixed to 90 dB and the matrix size is fixed to M = 4, while
the matrix set size K varies.

A. Perturbation Analysis in terms of a known Noise Tensor
For these simulations we generate, at every realization, random

matrix sets according to

Ŝk =
T ·Dk · T−1∥∥T ·Dk · T−1

∥∥
F

+ σ ·
∆Sk

‖∆Sk‖F
∀k = 1, 2, . . . , K,

where T , ∆Sk, and Dk are randomly generated using a zero-mean
Gaussian distribution (independently in each trial), and the SNR is de-
fined as SNR = −20·log(σ) [8]. All the tested algorithms stop iterat-
ing when the deviation (in terms of their corresponding criterion) be-
tween two consecutive iterations is less than 10−6, or when the max-
imum number of 50 iterations is reached. Similarly to [6], we define
rT to be the relative squared error between the eigenvector matrices as

rT =

∥∥∥T − T̂
∥∥∥2

F

‖T ‖2F
, (24)

where the permutation and scaling ambiguities, between T and T̂ ,
have been removed. Likewise, rD is the relative squared eigenvalue
error, defined as

rD =
1

K

K∑
k=1

∥∥∥Dk − D̂k

∥∥∥2

F

‖Dk‖2F
. (25)

Furthermore, the algorithms are compared in terms of three criteria: 1)
J in equation (2), 2) rT in equation (24), and 3) rD in equation (25).

In Figure 1, we evaluate the cost function J , in equation (2), for the
three test scenarios discussed above. We observe that the JET-O and
JET-U algorithms do not approach the analytically predicted values,
since they are not based on the indirect LS cost function. Moreover,
the JDTM algorithm reaches the predicted values, while the Sh-Rt
algorithm is slightly worse. Nevertheless, the coupled JEVD, despise
being an indirect LS algorithm, does not approach the predicted
values for J . This is more evident in Figures 1b and 1c, where
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Fig. 3: (3a): Median rT in equation (24) vs. SNR, for M = 4 and K = 20. (3b): Median rT in equation (24) vs. matrix set size K, for
M = 4 and SNR = 90 dB. (3c): Median rT in equation (24) vs. matrix size M , for K = 20 and SNR = 90 dB.

the test scenarios 2 and 3 are simulated. Yet, when we evaluate the
performance in terms of rD , in Figure 2, we observe that all JEVD
algorithms achieve the same performance in the high SNR regime.
But when we compare the algorithms in terms of rT , as shown in
Figure 3, we observe that the analytically predicted values match
the performance of two indirect LS algorithms (JDTM and coupled
JEVD), while the Sh-Rt algorithm does not achieve the analytical
performance. As expected, we observe that this does not hold true for
algorithms that are not based on the indirect LS (JET-O and JET-U),
where another performance analysis specific for these algorithms is
needed.

B. Closed-Form Expressions in terms of the Noise Statistics
In this section we show results for the special case of uncorrelated

noise with equal variance. For these simulations we generate, at every
realization, random matrix sets according to

Ŝk =
T ·Dk · T−1∥∥T ·Dk · T−1

∥∥
F

+ σ ·∆Sk ∀k = 1, 2, . . . , K,

where the entries of ∆Sk are randomly generated using a zero-
mean Gaussian distribution with variance σ2. Moreover, T and Dk

are randomly generated at the beginning of the simulation but fixed
through the 1000 realizations. Here, we use E {rT } =

E
{
‖∆T ‖2F

}
‖T ‖2F

and

E {rD} = 1
K

∑K
k=1

E
{
‖∆Dk‖2F

}
‖Dk‖2F

for the performance analysis, where

E
{
‖∆T ‖2F

}
and E

{
‖∆Dk‖2F

}
are computed analytically using

equations (22) and (23), respectively. The results are shown in Figure
4 and Figure 5 for the eigenvalues and eigenvectors, respectively.
They show that the analytical expression presents an excellent match
for both the eigenvalue and eigenvector perturbations (rD and rT ,
respectively) for the JDTM and Coupled JEVD algorithms. As shown
in the previous results, the Sh-Rt algorithm does not achieve the
analytical performance analysis in the eigenvector estimation sense.

V. CONCLUSION

In this work, we have performed a first order perturbation analysis
for several state-of-the-art JEVD algorithms. We have presented
closed-form expressions for the eigenvector and the eigenvalue
matrices, as well as the indirect LS cost function. The obtained
expressions are asymptotic in the SNR. Moreover, we have used
empirical simulations to illustrate the excellent match between the
closed-form expressions and the empirical results.
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