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ABSTRACT

In this paper we study the parameter estimation problem of an
OFDM based joint wideband SIMO radar and communication
system. The parameters to be estimated are time delays, relative
velocities, and angle of arrival (DoA) pairs of radar targets.
Due to the wideband assumption the received signal on different
subcarriers are incoherent and therefore cannot fully exploit the fre-
quency diversity of the OFDM waveform. In order to estimate the
parameters jointly and coherently on different subcarriers, we pro-
pose an interpolation based coherent multidimensional parameter
estimation framework, where firstly the wideband system model is
transformed into an equivalent narrowband system model, and then
multidimensional parameter estimation algorithms can be applied.
More precisely, a wideband R-D periodogram is introduced as a
benchmark algorithm and a high-resolution R-D Wideband Unitary
Tensor-ESPRIT algorithm is proposed. Simulation results show that
the proposed coherent parameter estimation method significantly
outperforms the direct application of multidimensional parameter
estimation algorithms to the wideband model.

Index Terms— Joint radar and communication, wideband
OFDM, Periodogram, Interpolation, ESPRIT.

I. INTRODUCTION

A joint radar and communication system, namely the commu-
nication radar, can exploit the available physical resources such as
spectrum and hardware components more efficiently compared to a
traditional radar or communication system [1], [2]. To facilitate the
equalization in a frequency selective environment, typically OFDM
waveforms are used [3], [4]. The performance of such a joint
radar-communication system was analysed in [5], [6]. Since a com-
munication radar is promising for applications such as intelligent
transportation systems (ITSs) [7], [8], it has been recently studied
in [2] and [9]. In [2] the OFDM communication radar is build
based on the sub-6 GHz car-to-car communication standard, i.e.,
IEEE 802.11p. The estimation of target distances and velocities has
been studied and a one-dimensional periodogram based algorithm
has been proposed and analyzed. In [9] the communication radar is
built based on the mmWave WLAN standard, i.e., IEEE 802.11ad.
A time domain correlation based parameter estimation method has
been proposed. In both papers a narrowband system is considered
and the proposed parameter estimation methods are search-based
non-parametric methods. However, for critical scenes subspace-
based high-resolution algorithms are preferred because they can
provide more accurate estimates. Moreover, since the distance
resolution of a radar is proportional to the bandwidth, the future
communication radar is likely to have a large bandwidth.

Therefore, this motivates us to study a joint wideband radar
and communication system. In this paper we focus on the radar
estimation problem under a wideband assumption. More precisely,
we develop parameter estimation methods for a communication
radar based on OFDM waveforms and, without loss of generality,

use a uniform rectangular array (URA) at the receiver. Unlike a
narrowband system, the wideband assumption results in different
phase shifts on different subcarriers and therefore different spatial
frequencies on each subcarrier [10]. These frequency imperfections
will cause a significant performance degradation if they are not
dealt with. Therefore, we propose an interpolation based coherence
parameter estimation framework to estimate time delays, relative
velocities, and angle of arrival (DoA) pairs of radar targets. To
this end, the wideband system model is transformed into an
approximately equivalent narrowband system by using interpolation
methods. This is only approximate since practically interpolation
errors cannot be avoided. After that, the parameters are estimated by
using the proposed multidimensional parameter estimation methods
on the equivalent narrowband system model. To this end, a low
resolution R-D periodogram is developed and used as a baseline
algorithm. The high resolution R-D Unitary Tensor-ESPRIT in
[11] is also extended to our scenario. Simulation results show
that the proposed multidimensional parameter estimation methods
provide a significant performance gain over the direct application of
multidimensional parameter estimation methods in such a wideband
system. In [10], the authors also use an interpolation technique for
the same problem, but only the Shannon-Whittaker interpolation
method is applied to a one-dimensional problem, followed by a 3-D
canonical polyadic (CP) decomposition based parameter estimation
method, which can also be extended to our problem. However,
the CP decomposition has a significantly higher computational
complexity compared to the HOSVD, which will be used in our
application. Moreover, we decompose a real-valued tensor that has
the same dimensionality as its complex-valued counterpart, which
reduces the computational complexity even further.

Notation: Upper-case and lower-case bold-faced letters denote
matrices and vectors, respectively. The expectation, conjugate, Her-
mitian transpose, and Moore-Penrose pseudo inverse are denoted
by E{·}, {·}∗, {·}H, and {·}+, respectively. The m ×m identity
matrix is Im. Moreover, the m×m exchange matrix with ones on
its antidiagonal and zeros elsewhere is Πm. The m ×m left-Π-
real matrix Qm satisfies ΠmQ∗

m = Qm. Furthermore, the absolute
value is denoted by | · |, the concatenation of matrices or tensors
along the r-th dimension is denoted by r (r = 1, 2, 3, 4) [11],
and the outer product between multi-linear vectors is ◦ [11]. The
r-mode product between a tensor and a matrix is ×r [12].

II. SYSTEM MODEL

We consider an OFDM based communication radar with a co-
located single transmit antenna and multiple receive antennas. The
receive antenna array is a Mx×My uniform rectangular array. We
assume that the radar and the communication system have different
baseband units but use the same RF components [2]. To avoid a
full-duplex operation of the communication system, the radar and
the communication system can transmit simultaneously but will not
receive simultaneously on the same subcarrier at the same time.
Since the two systems can work independently, in this paper we
focus on the radar function, i.e., the detection of targets. The h-th
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radar target (h ∈ {0, · · · , H − 1}) is parametrized by the time
delay τh = 2dh

c
, where dh denotes the distance between the radar

and the h-th target, the relative velocity νh and the DoA pair (φh,
θh), where φh and θh represent the azimuth angle and the elevation
angle, respectively. We have −π ≤ φh < π, 0 ≤ θh < π/2. The
OFDM waveform has a FFT size of Nfft. The radar estimation is
performed with a sequence of Nt OFDM symbols each with Nf

subcarriers, since we assume that the channel parameters do not
change over the Nt OFDM symbols. Let fnf denote the frequency
on the nf -th subcarrier (nf ∈ {0, · · · , Nf − 1}), which is defined
as fnf = f0 + nf · ∆f , where f0 is the carrier frequency at the
lower end of the band and ∆f is the subcarrier spacing. Note that
in a narrowband system we have fnf ≈ f0. Then the received
uniformly sampled discrete-time signal at the (mx,my)-th (where
mx ∈ {0 · · ·Mx − 1}, and my ∈ {0 · · ·My − 1}) antenna on the
nf -th subcarrier in the nt-th OFDM symbol is written as

ymx,my,nf [nt] =

H−1∑
h=0

khe
jβh · e−j2πτhnf∆f · e

j2πntνhT0fnf
c

ej2πmx
fnf

∆x

c
uhej2πmy

fnf
∆y

c
vh · snf [nt] + zmx,my,nf [nt] (1)

where kh =

√
c2σRCS,h

(4π)3d4
h
f2
c

is the unknown attenuation coefficient

defined as in [2], σRCS,h denotes the radar cross-section factor,
c is the speed of the light. The OFDM symbol duration is
given by T0 = 1

∆f
+ TG, where TG is the guard interval. The

random phase shift is denoted as βh. The transmitted symbol
is snf [nt] ∈ C and the transmit power is restricted such that
E{
∑Nfft
nf=1 |snf [nt]|2} = PT, ∀nt. The term zmx,my,nf [nt] denotes

the zero-mean circularly symmetric complex Gaussian (ZMCSCG)
noise with variance E{|zmx,my,nf [nt]|2} = σ2

n, ∀mx,my, nf , nt.
Furthermore, we define the direction cosines uh = cos(φh) cos(θh)
and vh = sin(φh) cos(θh), and the antenna spacings are denoted
as ∆x and ∆y.

The communication signal snf [nt] is is assumed to be random,
but obviously it is known at the co-located radar receiver. Therefore,
it can be removed from equation (1) by division and we obtain

rmx,my,nf [nt] = ymx,my,nf [nt]/snf [nt]. (2)

Given rmx,my,nf [nt], our goal is to estimate the parameters τh,
νh, φh, and θh. Although the estimation can be provided simply
by using just one subcarrier, it does not fully exploit the frequency
diversity of the OFDM waveform. Moreover, it will limit the
distance resolution of the radar, which depends on the bandwidth of
the effective waveform. It is our goal to develop coherent parameter
estimation methods which use all the subcarriers.

III. INTERPOLATION BASED COHERENT PARAMETER
ESTIMATION

Our proposed interpolation based coherent parameter estima-
tion algorithm consists of two steps. In the first step, the received
signals on different subcarriers are preprocessed by using an
interpolation algorithm such that an equivalent narrowband OFDM
system is obtained, i.e., the effective subcarrier frequency f̃nf = f0,
∀nf . In the second step, multidimensional parameter estimation
schemes such as the low complexity R-D periodogram and the
high resolution R-D Unitary Tensor-ESPRIT algorithm are applied
to the equivalent narrowband OFDM signal.

III-A. Pre-processing via Interpolation

The target of the pre-processing step is to obtain an equivalent
narrowband model of (2), i.e.,

r̃mx,my,nf [nt] =

H−1∑
h=0

khe
jβhe−j2πτhnf∆f · e

j2πntνhTsf0
c

· ej2πmx
f0∆x
c

uhej2πmy
f0∆y
c

vh + z̃mx,my,nf [nt], (3)

where z̃mx,my,nf [nt] is ZMCSCG noise. Let r̃mx,my,nf [nt] denote
the (mx,my, nf , nt)-th element of a four-dimensional tensor. Then
the tensor representation of the equivalent system model is given
by

R =

H−1∑
h=0

k̃h ◦ ah ◦ bh ◦ ch ◦ dh + Z ∈ CMx×My×Nf×Nt , (4)

where k̃h = khe
jβh and we have

ah =
[
1 ej2π

f0∆x
c

uh · · · ej2π(Mx−1)
f0∆x
c

uh

]
∈ CMx

bh =
[
1 ej2π

f0∆y
c

vh · · · ej2π(My−1)
f0∆y
c

vh

]
∈ CMy

ch =
[
1 e−j2πτh∆f · · · e−j2πτh(Nf−1)∆f

]
∈ CNf

dh =
[
1 e

j2πνhTsf0
c · · · e

j2π(Nt−1)νhTsf0
c

]
∈ CNt

Theoretically, this narrowband equivalent model can be ob-
tained by reconstructing a continuous signal, followed by sampling
with a decreased sampling interval. Taking the exponential term of
the relative velocity in dh as an example, this implies that using a
single antenna the nt-th OFDM symbol at the nf -th subcarrier is
obtained at the time instant

tnf ,nt =
ntf0Ts

fnf

, (5)

instead of ntTs for nt ∈ {0, · · ·Nt−1}. Similarly in the spatial
domains new samples (in ah and bh) are taken at the position

dnf ,mx =
mxf0∆x

fnf

and dnf ,my =
myf0∆y

fnf

. (6)

Under ideal conditions a perfect resampling is provided by the
Shannon-Whittaker interpolation [13], which is also used in [10].
However, practically the Shannon-Whittaker interpolation cannot
provide perfect reconstruction for a time-limited signal and it has
a high computational complexity. Therefore, this motivates us to
study alternative interpolation methods, which can be used to
obtain (3) approximately but they have a much lower computational
complexity.

More precisely, in this paper we apply the linear interpolation
method and the cubic spline interpolation method [14]. The former
one has a constant computational complexity but yields slightly
larger interpolation errors. The latter one has a cubic complexity
but produces a smoother fitting curve. If the linear interpolation is
used, then r̃mx,my,nf [nt] is computed by

r̃mx,my,nf [nt] = rmx,my,nf [nt]

+
tnf ,nt(rmx,my,nf [nt + 1]− rmx,my,nf [nt])

Ts
. (7)

This linear interpolation should also be applied on the two
spatial domains. We perform a multi-dimensional interpolation by
sequentially applying the one-dimensional interpolation.
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III-B. R-D Periodogram

After obtaining the equivalent narrowband signal model in (3)
we can apply the parameter estimation method to estimate τh,
νh, φh, and θh. The first algorithm we introduce is the R-D
periodogram as an extension of the one described in [2]. A one-
dimensional periodogram is the easiest way for spectral estimation,
i.e., for a given sequence of N discrete samples a(k) we compute
[15]

S(f) =
1

N

∣∣∣∣∣
N−1∑
k=0

a(k)ej2πfk

∣∣∣∣∣
2

.

Then the spectral components are obtained by searching the peaks
in S(f). Furthermore, a digital domain periodogram is realized
using a T -length FFT of the discrete samples. Therefore the
resolution is inversely proportional to T . In our case a four-
dimensional periodogram is required. To this end we perform the
FFTs over four dimensions sequentially. Let R̃ ∈ Cp1×p2×p3×p4

denote a tensor, whose r-th dimension (r ∈ {1, 2, 3, 4}) is obtained
by truncating the slices along the r-th dimension of R if pr is
smaller than the length of the r-th dimension of R, or by padding
zero slices along the r-th dimension of R if pr is not less than
the length of the r-th dimension of R. Then by using the tensor
notation in (4) we first compute

P = R̃×1 Dp1 ×2 Dp2 ×3 DH
p3
×4 Dp4 , (8)

where Dpr is the pr×pr DFT matrix. Then the R-D periodogram
is obtained as

S(i1, i2, i3, i4) =
1

MxMyNfNt
|Pi1,i2,i3,i4 |

2, (9)

where Pi1,i2,i3,i4 is the (i1, i2, i3, i4)-th element of P and we
have i1 ∈ {1, · · · , p1}, i2 ∈ {1, · · · , p2}, i3 ∈ {1, · · · , p3}, and
i4 ∈ {1, · · · , p4}. Finally, the computational complexity of the
R-D periodogram is dominated by equation (8), which is given
by O(p1p2p3p4(p1 + p2 + p3 + p4)). Note that the adaptive
implementation of (8) introduced in Section 3.3.2 of [2] can further
reduce the overall computational complexity.

III-C. R-D Wideband Unitary Tensor-ESPRIT

In this section we introduce a closed-form high-resolution
parameter estimation method, which is based on the R-D Uni-
tary Tensor-ESPRIT algorithm in [11]. The R-D Unitary Tensor-
ESPRIT algorithm is a real-valued Tensor-ESPRIT algorithm,
which has a lower computationally complexity compared to Tensor-
ESPRIT algorithms that are based on a complex-valued tensor
decomposition [11]. Next, we briefly describe how to extend the
R-D Unitary Tensor-ESPRIT algorithm to our problem.

First, define f̄1 = −2τhnf∆f and f̄2 = 2νhTsf0
c

. Assume
that f̄1 ∈ (−2, 0] and f̄2 ∈ (−1, 1]. Then we can interpret the
exponential terms as a function of time delays and relative velocities
as virtual uniform linear arrays (ULAs) with spatial frequencies f̄1

and f̄2, respectively. The tensor-based spatial smoothing (TB-SS)
technique can be used to extend the number of available snapshots
and to decorrelate coherent targets. Let us define L = L1L2L3L4

and Mr = Z−Lr+1, where Z ∈ {Mx,My, Nf , Nt}. Then the R-
D spatial smoothing is performed over R by following exactly Sec-
tion IV of [16] and we obtain a new Rss ∈ CM1×M2×M3×M4×L.

Next, we define the forward-backward averaged version of the
tensor Rss as

F = [Rss 5Rss ×1 ΠM1 ×2 ΠM2 ×3 ΠM3 ×4 ΠM4 ×5 ΠL] .

Then the tensor F ∈ CM1×M2×M3×M4×L is a centro-Hermitian
Tensor. The proof is straightforward according to Lemma 3 in [11].

Algorithm 1 R-D Wideband Coherent Parameter Estimation
Framework

1: Input: ymx,my,nf [nt], snf [nt], ∀mx,my, nf , nt. If the R-D
periodogram is used, set p1, p2, p3, and p4. If R-D Unitary
Tensor-ESPRIT is used, set L1, L2, L3, and L4.

2: Main step:
3: Obtain R by using the linear interpolation method in (7) or

the spline interpolation method.
4: if R-D periodogram then
5: Compute (8) and (9).
6: else if R-D Wideband Unitary Tensor-ESPRIT then
7: Obtain Rss using TB-SS in [16]
8: Estimate the tensor rank of H using R-D EFT in [17]
9: Estimate the tensor-based signal subspace Û s using (??)

10: Compute the LS solution of the shift invariance equation as
in [11]

11: Compute the SSD to obtain automatically paired spatial
frequencies uh, vh, f̄1, and f̄2 as in [11]

12: end if
13: Output: τh, νh, φh, and θh, ∀h.

Therefore we can map the centro-Hermitian tensor F into a
real-valued tensor F r by computing [11]

F r = F ×1 QM1 ×2 QM2 ×3 QM3 ×4 QM4 ×5 Q2L, (10)

where matrix Qm is assumed to be left-Π-real. Next, we estimate
the model order H of the real-valued tensor F r by using the R-
D exponential fitting test (R-D EFT) in [17]. According to [11],
the rest of the R-D Wideband Unitary Tensor-ESPRIT algorithm
consists of three steps, i.e., estimating the real-valued signal sub-
space, solving the linear R-D shift invariance equations using least
squares (LS), and computing the simultaneous Schur decomposition
(SSD) to obtain automatically paired frequencies uh, vh, f̄1, and
f̄2. Except for the tensor-based signal subspace estimation step,
the implementation of R-D Wideband Unitary Tensor-ESPRIT is
exactly the same as in [11]. To avoid the computation of the
truncated core tensor of the HOSVD of the tensor Fr , we use the
following relationship between the SVD-based and the HOSVD-
based subspace estimates [18], [19],[
Ûs

]T
(5)

=
(
(Ûs,1Û

H
s,1) ⊗ (Ûs,2Û

H
s,2) ⊗ (Ûs,3Û

H
s,3) ⊗ (Ûs,4Û

H
s,4)
)
· Ûs,

where Û s ∈ RM1×M2×M3×M4×H and Ûs ∈ RM1M2M3M4×H

represent the tensor-based and matrix-based signal subspace esti-
mate, respectively. The matrices Ûs,r ∈ RMr×H and Ûs consist
of the first H left singular vectors of the r-mode unfolding
[F r](r) (r ∈ {1, 2, 3, 4}) and [F r]

T
(5), respectively. Therefore,

these matrices can be obtained by computing the truncated SVDs of
the corresponding unfoldings, each of which yield a computational
complexity of order O(M1M2M3M4LH). Finally, the computa-
tional complexity of our proposed R-D Wideband Unitary Tensor-
ESPRIT is dominated by computing equation (??), which has the
order of O(M2

1M
2
2M

2
3M

2
4H).

To summarize, the proposed interpolation based coherent pa-
rameter estimation framework is described in Algorithm 1.

Remark 1. The interpolation errors increase when the subcarrier
index and the antenna index are large. To reduce the errors one
could consider to use oversampling such that those frequencies are
kept low for any possible values of the parameters of interest (rela-
tive velocity and DoAs). Windowing can also decrease interpolation
errors especially for the Shannon-Whittaker interpolation. But it
cannot be used when ESPRIT-type algorithms are applied, because
it will destroy the shift invariant structure of the measurements.
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Fig. 1. Comparison of the achieved resolution for the proposed
algorithms in terms of RMSEtot.
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Fig. 2. Comparison of the RMSEtot as a function of the received
SNRRx for target at distance d1 = 95 m.

IV. SIMULATION RESULTS

In this section the proposed interpolation based coherent pa-
rameter estimation framework is evaluated using Monte Carlo
simulations. During our simulations, the following assumptions are
made: 1) the radar targets are considered as point scatterers; 2) we
use a free space pathloss model; 3) there is no clutter in the system.
Moreover, the carrier frequency is f0 = 24 GHz. The OFDM
symbol duration is T0 = 1.6 µs. The FFT size is Nfft = 64 and we
set Nf = Nfft. The system bandwidth is B = 76.8 MHz and the
subcarrier spacing is ∆f = 1.2 MHz. The physical antenna spacing
is chosen as ∆x = ∆y = c

4f0
, which results in oversampling in the

spatial domains. Each training period consists of Nt = 10 OFDM
symbols. The URA is of size Mx ×My = 5 × 5. The transmit
power is equal to Pt = 40 dBm. The noise power spectral density
is N0 = −199 dBm/Hz. When the R-D periodogram is used, we
set p1 = 4Mx, p2 = 4My, p3 = 4Nf , and p4 = 4Nt. When R-D
Wideband Unitary Tensor-ESPRIT is used, we set L1 = L2 = 1,
L3 = 55 and L4 = 3. The simulation results are averaged over
1000 realizations.

The evaluation criterion is the total root mean square estimation
error (RMSEtot). The RMSEtot is defined as

RMSEtot =

√√√√ 4∑
r=1

w2
(r)

1

H
E

{
H−1∑
h=0

(x
(r)
h − x̂

(r)
h )2

}
.

where x(r)
h ∈ {dh, νh, uh, vh} and x̂(r)

h is an estimate of x(r)
h ,

and w(r) = [0.5 1/m,2.6 · 10−3 s/m,1.25, 1.25] a some weighting
coefficients defined empirically.

In the first simulation there are two targets, i.e., H = 2, and
our goal is to study the spatial resolution provided by the proposed
algorithms. We set φ1 = φ2 = θ1 = θ2 = 45◦, and velocities
νx,1 = νx,2 = 20 m/s, νy,1 = νy,2 = νz,1 = νz,2 = 0 m/s,
where νx,h, νy,h and νz,h are projections of the absolute speed
on Euclidean coordinates. The distance between the radar and the
second target is d = 50 m while the distance between the radar
and the first target varies from 30 m to 70 m during the simulation.
Let ∆d denotes the distance between the two targets. Let ”Nbd”
and ”Wbd” denote the narrowband model in (3) and the wideband
model in (1), respectively. Let ”Per.” and ”UTE” denote the R-
D periodogram and the R-D Unitary Tensor-ESPRIT algorithm,
respectively. Let ”linear”, ”spline”, and ”SW” represent the linear
interpolation, the spline interpolation, and the Shannon-Whittaker
interpolation method, respectively.

Then it can be seen in Fig. 1 that the proposed R-D Wide-
band Unitary Tensor-ESPRIT using any interpolation algorithm
provides a significant performance gain as compared to narrowband
algorithm. Notice that interpolation techniques do not improve the
performance of the R-D periodogram.

In the second simulation we consider five fixed targets, i.e.,
H = 5, and the estimation error is plotted as a function of
the received SNRRx of the first target at distance d1 = 95 m,
which is altered via changing the noise figure NF. The pa-
rameters of five targets are chosen to be close to each other:
dh ∈ {95, 100, 105, 110, 115} m, φh ∈ {26◦, 30◦, 34◦, 38◦, 42◦},
θh ∈ {52◦, 55◦, 58◦, 61◦, 64◦} with νx,h = 20 m/s and νy,h =
νz,h = 0 m/s for all h ∈ {1, · · · , 5}.

Fig. 2 depicts the results of second simulation. The proposed
R-D Wideband Unitary Tensor-ESPRIT combined with spline
interpolation provides the best performance in the wideband case.
Periodogram based solutions fail to resolve such closely spaced
targets. Since there are always residual interpolation errors, error
floors exist for all algorithms in case of the wideband model (1)
when the received SNRRx is large. It can be observed that the gain
through interpolation for UTE appears only when received SNRRx

exceeds 30 dB, which is expected since the additive noise simply
overshadows differences between narrowband and wideband data
models.

V. CONCLUSION

In this paper we have studied a wideband SIMO communication
radar based on OFDM waveforms. The wideband assumption
results in incoherent signals on different subcarriers. To reduce
the incoherence we have proposed an interpolation based coherent
parameter estimation framework. First, the wideband system model
is converted into an approximately equivalent narrowband model
by using different interpolation methods. Linear interpolation is
chosen due to its lowest computational complexity, while cubic
spline interpolation is used due to its low interpolation error.
Then the multidimensional parameter estimation algorithms, i.e., a
baseline algorithm based on the R-D periodogram and the proposed
R-D Wideband Unitary Tensor-ESPRIT, are applied to provide
accurate estimates. The simulation results show that the proposed
algorithms outperform the Shannon-Whittaker interpolation based
coherent solution as well as the direct application of the narrowband
parameter estimation methods on the wideband model. Moreover,
the R-D Wideband Unitary Tensor-ESPRIT algorithm provides a
better resolution than the R-D periodogram. It should be noted that
the application of interpolation techniques is only beneficial in the
high SNR regime or in case of high fractional bandwidths.
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