
POLARIMETRIC RADAR CROSSTALK REMOVAL DURING SPARSE IMAGE FORMATION

Julie Ann Jackson ∗

Dept. of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

Forest Lee-Elkin

Consultant
Xenia, OH 45385

ABSTRACT

We extend previous work in sparsity-regularized radar imaging to
the case of multiple, coupled polarization channels. We demonstrate
the ability to extract key canonical polarization signatures while em-
phasizing spatial sparsity and removing channel crosstalk. When the
crosstalk is known, measured data can be decoupled prior to sparse
imaging. However, the proposed incorporation of channel crosstalk
in the sparse imaging optimization is preferred, as it enables future
research of cases when crosstalk is not invertible or is not known.

Index Terms— radar imaging, polarimetric SAR, crosstalk,
sparse regularization

1. INTRODUCTION

Sparsity-driven synthetic aperture radar (SAR) imaging has received
considerable attention in the last decade, since the results introduced
in [1, 2] can be tied to compressive sensing techniques [3, 4]. While
design of a compressive sampling method for radar remains an open
problem [5], regularized imaging can be applied to any data set to
enhance features of interest. Previous work in sparsity-regularized
radar imaging has emphasized point features and smoothly-varying
features [1, 2, 6–9] as well as features from various signal dictio-
naries [10–13]. However, there has been very little consideration
of enhancing polarimetric features. In this paper, we extend [1, 2]
to jointly enhance multiple polarization channels. Our method re-
moves channel crosstalk, emphasizes spatial sparsity, and recovers
polarization information vital to target recognition tasks.

Enforcing spatial sparsity during image formation removes
noise, clutter, and point spread effects to enhance target visual-
ization. Polarimetric signatures disambiguate and further charac-
terize target type. Recent work in [14] performed large area land
cover classification via matching pursuit, using incoherent spatially-
averaged polarization covariance matrices and an over-complete
dictionary, learned from training samples in the image. We are in-
terested in polarimetric decomposition of scattering mechanisms for
target recognition, such as, for example, the vehicle classification
problem in [15]. Therefore, we consider complex-valued SAR im-
ages and reflectivities, as in [1,2,6–13]. Much of that previous work
has considered only a single radar channel during sparse reconstruc-
tion. Joint enhancement of multiple, independently-collected radar
channels is developed for multi-pass interferometric SAR in [9].
However, polarimetric SAR (PolSAR) channels are simultaneously
collected on the same platform. Data dependencies in the form of
channel crosstalk can occur. Polarimetric decomposition of simple,
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simulated scenes in [8] did not suffer degradation due to independent
channel sparse regularization; however, joint enhancement is more
appropriate to preserve polarimetric information during sparse regu-
larization. Also, in [16, Ch. 7], it is assumed that each channel has
the same sparsity support, and a mixed-norm multiple measurements
vector problem is solved. However, polarization channels may not
have the same sparsity support (e.g. dihedral or trihedral scattering
with non-zero co-pol response and zero cross-pol response [17]).
Therefore, we extend prior work [1, 2] to the case of multiple, de-
pendent channels by stacking the polarization channels. Although,
it is known that crosstalk can be perfectly corrected (in the noise-
less case) if all four polarimetric channels are collected [18, 19],
we incorporate the channel crosstalk matrix in the image formation
operation during sparse regularization. Including crosstalk in the
multi-channel sparse imaging approach enables future extension of
this work to cases in which the crosstalk matrix is not invertible or
is unknown and must also be estimated. Thus, this paper provides a
framework and initial examples for the relatively unexplored area of
sparse-regularized polarimetric radar image enhancement.

2. SAR OVERVIEW

A single channel SAR image provides a two dimensional map of a
scene’s reflectivity at the radar’s radio frequency and polarization.
Image coordinates are range and cross-range from the radar. Due to
finite bandwidth and limited aperture extent, the image y

1
depicts a

scene’s complex-valued reflectivity response x
1

convolved with the
radar imaging system’s impulse response, or point spread, function
h

1
. Including additive noise n

1
, the image is y

1
= x

1
∗ h

1
+ n

1
,

where the double-underline denotes a matrix. Alternatively, SAR
imaging can be written as a discrete linear system model [1, 2, 5]

y
1
= A

1
x1 + n1 (1)

where y
1
, x1, and n1 are a vectorized forms of their corresponding

matrices and A
1

is the single channel image formation operator. In
practice, images are typically formed from collected data via back-
projection or polar format algorithms (PFA) [20]. Explicit formation
of A

1
is not straightforward; however, after pre-processing the data

by interpolation onto a regular grid, A
1

can be easily implemented
as a series of (inverse and forward) discrete Fourier transforms, zero-
padding/truncation, and phase correction operations.

3. POLARIMETRIC SAR IMAGING

Reflections from an object depend on the polarization of the incident
radiation; scattering information from multiple polarizations assists
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target characterization. Polarimetric SAR transmits/receives multi-
ple polarizations and provides a reflectivity image for each trans-
mit/receive polarization channel.

The discrete linear system SAR imaging model with M chan-
nels has the same form as (1). The unknown polarization channel
reflectivities x1, . . . ,xM are stacked into the multi-channel reflec-
tivity vector x = [xT

1 , . . . ,x
T
M ]T . Likewise, channel measure-

ments are stacked into the multi-channel observed image vector y =

[yT

1
, . . . ,yT

M
]T , and per channel additive noise vectors are stacked

into n = [nT
1 , . . . ,n

T
M ]T .

Although radar designs attempt to isolate each polarization an-
tenna, crosstalk between theM channels can occur, resulting in con-
taminated measurements on each channel [18, 19]. The unknown
multi-channel reflectivity at the nth pixel location is the length M
vector

sn =
[
xn, xN+n, · · · , x(M−1)N+n

]T (2)

where N is the number of pixel locations in a single channel of y.
(For simplicity of discussion, we refer to points in the image y and
points in reflectivity x as pixels; however, x may be defined at the
sub-pixel level.) The effect of channel crosstalk at the nth pixel is
modeled by the crosstalk matrix C so that, at the nth pixel location,
the radar observes the mixture C sn. The crosstalk matrix

C =


C11 C12 . . . C1M

C21 C22 . . . C2M

...
...

. . .
...

CM1 CM2 . . . CMM

 (3)

contains coefficients specifying what mixture of the M pure chan-
nels is observed at each of the 1, . . . ,M contaminated channels.

The relation between the measured multi-channel image vector
and the unknown reflectivity is

y = A
M

(C ⊗ I
N
) x+ n (4)

= (C ⊗ I
N
)A

M
x+ n (5)

where ⊗ denotes the Kronecker product, I
N

is an N × N identity
matrix, and A

M
is the multi-channel imaging matrix

A
M

=


A

1
0 0 . . .

0 A
1

0

0 0 A
1

...
. . .

 . (6)

Commutation of terms in (4)-(5) is possible due to the block diago-
nal structure of the matrices. Incorporating channel crosstalk in the
imaging operator, we have

A = (C ⊗ I
N
)A

M
=


C11A

1
C12A

1
. . . C1MA

1
C21A

1
C22A

1
. . . C2MA

1
...

...
. . .

...
CM1A

1
CM2A

1
. . . CMMA

1

 ,
(7)

so the multi-channel extension of (1) is

y = A x+ n. (8)

If crosstalk is negligible, then A = A
M

simply results in the multi-
channel equation (8) being a stacked version of the single channel
equation (1).

Key target signature information can be obtained from the po-
larimetric image stack. An estimate ŝn of the polarimetric reflectiv-
ity (2) at pixel location n can be decomposed as

∑Q
q=1 bqsq into Q

scattering coefficients bq for mechanisms sq that aid in target recog-
nition and scene interpretation [15, 17, 21, 22]. Examples of basic
scattering types include volume scattering, double-bounce scatter-
ing, odd-bounce scattering, and helix scattering [21, 23]. Pauli or
Krogager bases are often used and relate to the aforementioned scat-
tering types [15, 17]. Pseudo-color radar images may be generated
to visualize the polarization response of a scene by associating one
color with each basis vector [17, 21].

For simplicity, in this work, we consider an orthogonal basis set
comprised of just three canonical polarization response types: trihe-
dral stri = 1√

2
[1, 0, 0, 1]T , dihedral sdih = 1√

2
[1, 0, 0,−1]T , and

cross-pol scross = 1√
2
[0, 1, 1, 0]T , where the four channels corre-

spond to linear–horizontal (H) and vertical (V)–transmit and receive
polarization channels: HH, HV, VH, and VV, respectively. The re-
sponses are mapped to cyan, magenta, yellow (CMY) colors, respec-
tively, for visualization purposes. The estimated CMY coefficients
of pixel n with response ŝn are

[Ĉ, M̂ , Ŷ ] =
[
|ŝTnstri|
|ŝn|

,
|ŝTnsdih|
|ŝn|

,
|ŝTnscross|
|ŝn|

]
. (9)

Our image reconstruction method is not limited to three basis vec-
tors; however, visualization becomes more difficult when map-
ping more than three basis vectors to a pseudo-color image. Es-
timated target polarization responses are displayed in Figure 4,
where pure CMY colors represent each of the three basis vectors
{stri, sdih, scross}.

4. MULTI-CHANNEL SPARSE REGULARIZATION

Radar aperture and bandwidth limitations broaden the point spread
function h, resulting in target spreading in the image domain. When
there are few scatterers compared to the scene size, spatially-sparse
estimates of scene reflectivity that remove or reduce the point spread-
ing may be recovered by solving [1, 2]

argmin
x
‖y −A x‖22 + λ1‖x‖pp, (10)

where λ1 is a positive scalar that enforces sparsity, as measured by
the p-norm of the estimated reflectivity function x, with 0 < p ≤ 2.
For 1 ≤ p ≤ 2 minimization of (10) is convex [1]. Smaller p or
larger `p sparsity penalty coefficient λ1 equate with increased solu-
tion sparsity. Previous work has considered a single independently-
collected radar channel. We consider multiple, simultaneously-
collected channels with crosstalk, defining y,A, and x as specified
for (8).

Alternatively, if C is known and invertible, then one can pre-
process the observed data y and solve the sparse imaging problem

argmin
x
‖(C ⊗ I

N
)−1y −A

M
x‖22 + λ2‖x‖pp. (11)

We note that (11) is valid but is not equivalent to (10) because the
`2-norm expression differs. Current theory does not characterize the
intersection of the solution space of (10) (as a function of λ1) and the
solution space of (11) (as a function of λ2), and that topic is beyond
the scope of this current work. Furthermore, we do not consider
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the general problem of choosing an `p sparsity penalty coefficient,
which is discussed for SAR imaging in [24].

Although both (10) and (11) yield sparse solutions x that bal-
ance the `2 and `p error terms, we prefer the problem setup (10),
where A includes crosstalk, as defined in (7). The optimization (10)
decouples crosstalk during sparse image formation and may be eas-
ily extended to consider cases where C is not invertible or where
components of C are unknown and must also be estimated, for ex-
ample using bilinear optimization [25].

To solve (10), we follow the surrogate optimization approach
in [2]. This is an iterative process where[

AHA+
λ

2
D(x(i))

]
x(i+1) = AHy (12)

is solved for x(i+1) using a preconditioned conjugate gradient
(PCG) [26] numerical search. Iteration index i is incremented, and
the process is repeated until convergence criteria are satisfied, in-
dicating that x has reached a fixed point of (12) . (Note, to solve
the alternative problem (11), the solution (12) is modified by re-
placing A with A

M
and observations y with the pre-processed data

(C ⊗ I
N
)−1y). In (12),

D(x(i)) =


p(|x(i)

1 |2 + ε)p/2−1 0 0

0
. . . 0

0 0 p(|x(i)
N |

2 + ε)p/2−1


(13)

where each entry is, for some small ε, an approximation to the `p-
norm for purposes of differentiability [2]. Also, following [1, 2],
we do not explicitly form A (or A

M
) but use more computationally

efficient strategies.

5. RESULTS

We generate an example scene of four targets comprised of ideal
point scatterers endowed with trihedral, dihedral, or cross-pol re-
sponses. The target point scatterer locations, amplitudes, and ideal
polarization responses are listed in Table 1. The radar was as-
sumed to operate at 2 GHz center frequency and have approximately
1 m × 0.96 m range×cross-range resolution. PFA is used to gener-
ate initial images for each of M = 4 polarization channels. (For any
radar, M ≤ 4). The cross-channel contamination is generated with
Gaussian random off-diagonal elements and is

C =

1.0000 0.1065 0.0934 0.4287
0.3704 1.0000 0.4995 0.0536
0.2936 0.1253 1.0000 0.3782
0.1993 0.2099 0.1544 1.0000

 . (14)

Physical antenna properties may induce more structure in C in prac-
tice but the random case provides an illustrative example. For now it
is assumed that we can know C via radar calibration. Complex white
Gaussian noise is added to the contaminated images with a peak
signal-to-noise ratio (SNR) of 30 dB. The PFA and noisy, crosstalk
contaminated images are shown in Figure 1. Circles indicate a tar-
get location and are displayed for reference in all image channels
regardless of target polarization type.

Following the approach discussed in Section 4, we solve (10)
and (11) with p = 1 and λ1 = 0.4, λ2 = 0.3 to enhance point
features in each image. Figures 2 and 3 show the sparse images

recovered in each case. Figures 1-3 are all plotted according to the
dynamic range shown in the colorbar in Figure 1. Values of λ1 and
λ2 are chosen arbitrarily to yield similar visual sparsity. As desired,
noise, cross-channel contamination, and point spreading are reduced
in both sparse solutions.

A CMY color representation of the sparse-regularization results
is shown in Figure 4. The CMY representation does not appear
sparse like Figures 2 and 3 since only polarization (not amplitude)
information is displayed. The CMY coefficients for each target pixel
are listed in the image. The total absolute error (TAE) between the
computed and ideal CMY values (computed as |Ĉ − C| + |M̂ −
M | + |Ŷ − Y | for each target pixel) is listed in Table 1. Solutions
to both (10) and (11) recover estimates of the desired polarimetric
signatures for each target pixel that reduce CMY error compared to
the observed images. However, the TAE values for (10) and (11)
should not be directly compared since, as noted in Section 4, the
two problems are not equivalent. Rather, the TAE values serve to
show that each approach provides a valid sparse multi-channel en-
hancement that estimates the true target polarization responses, re-
sulting in purer CMY colors for Targets 1, 2, and 3. Target 4 contains
three point scatterers of equal proportion, each with a different polar-
ization type. The jointly-enhanced images have a better balance of
colors (scatterer proportion) than the observed contaminated, noisy
images, providing more accurate overall target information than the
initial images.

(a) HHPFA (b) HVPFA

(c) VHPFA (d) VVPFA

(e) HHcontaminated + noise (f) HVcontaminated + noise

(g) VHcontaminated + noise (h) VVcontaminated + noise

Fig. 1. Original PFA images and observed noisy, crosstalk contami-
nated images. (Colorbar units are dBsm.)
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Table 1. Ideal target truth and estimated target reflectivity CMY polarization coefficient errors.
Scatterer Location Scatterer Scatterer Ideal Pol. Ideal [C,M,Y] CMY Total Absolute Error
(range,cross-range) Amplitude Polarization Response Target Pixel PFA Observed Sparse Decoupling Pre-processed

meters Type [HH,HV,VH,VV] Coefficients Image Images (Solution to (10)) (Solution to (11))
Target 1 (−1,−3) 1 trihedral 1√

2
[1, 0, 0, 1] [1, 0, 0] 0.0357 0.5075 0.1185 0.0992

Target 2 (0, 0) 1 dihedral 1√
2
[1, 0, 0,−1] [0, 1, 0] 0.0404 0.4323 0.0933 0.0298

Target 3 (1, 2) 2 cross-pol 1√
2
[0, 1, 1, 0] [0, 0, 1] 0.0126 0.3091 0.0013 0.0020

Target 4
(0.95,−4) 0.5 trihedral 1√

2
[1, 0, 0, 1]

0.48510.4851

0.7276


T

0.0587 0.4190 0.2806 0.1430(1,−4.1) 0.5 dihedral 1√
2
[1, 0, 0,−1]

(1.1,−3.9) 0.75 cross-pol 1√
2
[0, 1, 1, 0]

(a) HH (b) HV

(c) VH (d) VV

Fig. 2. Multi-channel sparse regularization image enhancement re-
sults. (Solution to (10) for λ1 = 0.4).

(a) HH (b) HV

(c) VH (d) VV

Fig. 3. Multi-channel sparse regularization image enhancement re-
sults for decoupled data. (Solution to (11) for λ2 = 0.3).

6. CONCLUSION

We extended sparsity-regularized SAR imaging to recover canon-
ical scattering signatures from crosstalk-contaminated polarimetric
radar data. Incorporation of crosstalk in the multi-channel sparse op-
timization allows for future exploitation of the proposed framework
to study interesting cases of non-invertible or unknown crosstalk. An
initial study into polarimetric radar compressive sensing by dropping
a channel (i.e. a row of C) is underway [27].

(a) Observed

(b) Solution to (10)

(c) Solution to (11)

Fig. 4. Pseudocolor polarimetric results showing recovery of target
pixel polarization signatures.
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