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ABSTRACT�

This paper presents a comprehensive benchmark 
comparison in objective as well as subjective 
performances of radio-frequency interference (RFI) 
suppression/extraction techniques for ultra-wideband 
(UWB) signals in synthetic aperture radar (SAR) imaging 
applications. In this study, we employ two sets of UWB 
SAR signals: one simulated from a step-frequency radar 
setup, whereas the other is collected on the testing field in 
a real-world setup from the U.S. Army Research 
Laboratory. Similarly, our RFI experiments involve two 
RFI data sets: one is simulated from a collection of 
randomly generated frequency bands and the other is the 
RFI data collected in a real-world environment with the 
radar receiving antenna pointing toward Washington DC. 
These SAR and RFI data sets represent four diverse 
experimental setups where we can carefully benchmark 
the denoising performance of several popular RFI-
mitigation techniques in the current literature based on 
notch-filtering, principal component analysis (PCA), 
model-based sparse recovery, and simultaneous low-rank 
and sparse recovery or robust PCA (RPCA). We validate 
that RPCA and model-based sparse recovery consistently 
yields the best overall RFI separation performance on a 
wide range of settings in all data sets.    
Index Terms — noise-source separation, radio-frequency 
interference, RFI, ultra-wideband, SAR  
�

1.�INTRODUCTION�
Ultra-wideband (UWB) radars – transmitting 

signals in a wide frequency spectrum from under 100 
MHz to several GHz – provide high imaging resolution 
and valuable penetrating power. These systems are very 
popular in numerous military and surveillance 
applications such as foliage-penetration (FOPEN), 
sensing-through-the-wall (STTW), and automatic 
detection of improvised explosive devices (IED) [1]-[4]. 
Unfortunately, UWB receivers are susceptible to 
corruptive radio-frequency interference (RFI) sources 
since the radar operating spectrum in this case is often 
dominated by various signal modulation schemes popular 
in wireless broadcasting and communication, resulting in a 
severely reduced signal-to-noise ratio (SNR), and hence, 
the final synthetic aperture radar (SAR) image quality. 

Mitigation of RFI is a critical challenge for UWB radars. 
Unfortunately, this is a notoriously difficult problem due 
to the dynamic and unpredictable nature of the noise 
sources, not to mention the strength of the noisy signals. 
Previous work in this RFI-mitigation area can be 
classified into two categories: (i) RFI suppression via 
filtering techniques, where estimated RFI sources are 
filtered out or suppressed under the noise floor; and (ii) 
RFI extraction, where RFI components are first 
identified, estimated, and then subtracted out of the 
observed signals. Following the former approach include 
notch filtering, sub-band filtering, and/or adaptive filtering 
techniques, which are popular in practical 
implementations due to their simplicity [5]-[6]. The latter 
extraction approach comprises techniques employing 
parametric noise modeling [6], independent component 
analysis [7], eigensubspace decompositions [8]-[9], and 
sparse recovery [10]-[12]. 

In many research areas, e.g., computer vision, 
machine learning and compression, there exist diverse, 
well-designed standard data sets along with 
corresponding benchmarking mechanisms for researchers 
to compare different proposed approaches. Such public-
domain data sets are rare in radar imaging – all of these 
aforementioned previous works present results on 
different data sets with very different assumptions, 
making performance comparison extremely difficult. In 
this paper, we try to take the first step in addressing this 
issue. Our main contributions include (i) we carefully 
design several diverse data set with realistic SAR signals 
and RFI sources via combination of both simulation and 
real data collected from well-controlled, real-world 
environments; (ii) we present a comprehensive 
comparison of popular RFI-mitigation techniques on 
these same data set; (iii) we show that robust principal 
component analysis (RPCA) and the model-based sparse 
recovery offers the most effective tool to tackle this RFI 
mitigation problem for UWB radars; and (iv) we intend to 
make these data sets available to all researchers in the 
field for algorithm testing and evaluation.       

2.�BACKGROUND:�UWB�SAR�AND�RFI�
MODELING�

Let us consider a simplistic impulse-based SAR 
system trying to capture a simple scene with only two 

3086978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



significant targets, as depicted in Fig. 1. At aperture i, the 
transmitter would transmit a probing pulse s and the 
receiver would record the echoed backscattered signal xi. 
In the ideal case with exactly two point targets and 
without any interference, we expect the received signal to 
contain two backscattered pulses indicating how far apart 
our targets are with respect to the sensing platform. Note 
that this example illustrates precisely a UWB radar 
system, since the impulse in time leads to a wideband 
frequency representation.  

In practice, UWB radar signals are often 
susceptible to interference by wireless signals ri from 
AM/FM radios, TV broadcasting, mobile phone 
communications, etc. Hence, at each aperture, we instead 
observe yi=xi+ri with the following common 
characteristic: narrow pulses xi indicating the presence of 
significant targets of interest embedded in a sea of RFI 
waves yi. In short, SAR signals xi are sparse in the time 
domain (wideband), whereas RFI signals ri are sparse 
(narrowband) in the frequency domain. They come from 
completely independent sources and they behave very 
different statistically. This critical property makes signal-
interference separation possible when we observe the 
mixture yi. In other radar implementations such as chirp 
or stepped-frequency, an extra signal pre-processing step 
is necessary to fit the observed data to this model. When 
data from all apertures are grouped together column-wise, 
we have the matrix model Y = X+R. 

 
3.�BENCHMARKING�DATA�SETS�AND�RFI�

MITIGATION�APPROACHES�
Our experiments are conducted on an UWB step-
frequency simulated data set as well as on a real impulse-
based UWB BoomSAR data set collected from the U.S. 
Army Research Laboratory (ARL) radar [3]. Our 
simulated SAR data set is generated from a monostatic, 
side-looking, step-frequency SAR model setting with 
1200 aperture positions in a straight line, imaging a scene  
with around 30 point targets of various amplitudes 
located in a uniform rectangular array. The largest targets 
are calibrated at the amplitudes of 0 dB, and the smallest 
targets have the amplitudes of –35 dB. The SAR signals 

occupy a spectrum from 300 to 1500 MHz, with no energy 
outside this band. However, since the energy is tapered at 
both ends of the spectrum, the effective spectrum of the 
SAR data spans approximately from 350 to 1450 MHz. 

The real UWB low-frequency BoomSAR data set is 
collected from ARL UWB low-frequency SAR that 
transmits impulse radar signals that generate instantaneously 
a wide bandwidth that spans approximately 50 to 1150 
MHz.  The UWB BoomSAR is mounted on a platform that 
emulates the airborne geometry [3].  

There are also two different RFI noise data sets in our 
experiments: the simulated RFI data set is generated from 
randomly modulated tones, whereas the real RFI data set is 
collected from the real environment with the antenna 
pointing toward Washington, D.C. In the real RFI case, for 
each aperture location i where radar data are collected, a 
segment of noise record is randomly captured and added to 
the raw radar data record. In this case, we cannot control the 
RFI bandwidth level. Hence, we have to employ a simple 
scaling factor to control the interference power level. 
      Our simulated RFI data set presents a more challenging 
scenario. At each aperture position, the RFI signal is 
simulated by generating many individual RFI sources (or 
bands). Each RFI source is a modulated signal with a 
bandwidth of 6 MHz, composed of many tones within its 
bandwidth. Each tone has a uniformly distributed random 
amplitude and phase. Thus, the analog model for such RFI 
signal at each aperture record is   
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where M is the total number of RFI sources across the SAR 
spectrum, N is the number of tones within each RFI source, 
ijA  is the amplitude of each tone and is uniformly 

distributed within the interval [0, A], jf is the start 
frequency of the jth RFI source, f is the frequency spacing 
between the tones that compose an RFI source, and ij is the 
phase of each tone, again uniformly distributed within the 
interval [0, 2 ].  
      RFI signals generated with its contents within its 
bandwidth are completely random. It represents a more 
challenging noise source compared to other practical 
modulation schemes such as AM, FM, and/or other digital 
modulation sources. Given the RFI to SAR bandwidth ratio, 
a number of 6-MHz RFI sources are generated across the 
SAR spectrum. It is likely that some of them are adjacent to 
others, forming RFI sources with bandwidths larger than 
6 MHz. In addition, even with an individual RFI source of 
6 MHz, the width of its main lobe overlaps a much larger 
bandwidth with the SAR data. Again, these simulated RFI 
signals are selected at random and added to the original 
SAR data to simulate RFI-contaminated signals. In the 
simulated RFI case, we do have control of both RFI 
bandwidth as well as RFI power level. 

Figure� 1. A simple illustration of an impulse-based 
UWB SAR received signals, with and without RFI. 
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      To benchmark RFI suppression/extraction performance, 
we propose to employ the root-mean-square (RMS) error as 
well as the SNR between the original data records and the 
recovered ones either directly in the time domain or 
between the original SAR image and the image from 
recovered signals: 
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We also define the processing gain (PG) as follows: 
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where x is the original SAR signal/image, x̂  is the 
recovered SAR signal/image, and y is the observed RFI-
contaminated signal/image. 
     With two SAR and two RFI data sets, we can generate a 
total of four different testing scenarios: (i)� simulated SAR 
with simulated RFI signals, (ii) simulated SAR with real 
RFI signals, (iii) real SAR with simulated RFI signals, and 
finally (iv)� real SAR with real RFI signals. Since RFI are 
artificially injected into the SAR signals, ground truths are 
available for all testing scenarios, allowing us to compute 
many objective performance measures mentioned above.  
 

4.�ALGORITHMS�IN�COMPARISON�
We select the following four RFI-mitigation techniques 

for performance comparison in this study.  
Notch�Filtering [5]-[6] [11]. We employ a simple spectrum 
estimator based on averaging of observed signals Y as 
described in [11] to identify RFI-dominant sub-bands and 
then suppress these RFI peaks with narrowband filters. This 
classical technique is simplest, fastest, and often the first 
choice in practical systems. However, notching is known to 
adversely affect the strength of SAR signals and introduce 
significant sidelobes, leading to severe ringing problems in 
the final SAR image. 
Eigensubspace� Decomposition� or� PCA [7]-[9]. At each 
aperture, the observed data matrix Y is constructed from 
segments of the received signal yi. RFI components are then 
estimated from dominant eigenvalues and RFI is extracted 
out of the observed Y via subspace projection. The main 
problem here is that PCA has no discriminative power and it 
only works well when RFI has really narrow bandwidth and 
its energy is significantly higher than that of SAR signals.   
Sparse�Recovery [10]-[12]. This approach constructs the 
SAR dictionary xD from the transmitted waveforms and an 
estimated RFI dictionary r

iD from the observed signals; we 
then solve the optimization problem (with orthogonal 
matching pursuit [OMP]): 

                         s.t.  minarg ˆ,ˆ 00      
2
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to extract out the RFI component i
r
ii eDr ˆˆ . Sparse 

recovery generally works well in all scenarios. Its main 
drawback comes from the additional step of dictionary 
learning. The next sections shows that, when the data model 
is accurate, sparse recovery yields the best performance.  
RPCA [13]-[14]. The simultaneous low-rank and sparse 
recovery approach [13] models the problem via RPCA [14]. 
The RFI components R are modeled as low-rank whereas 
the SAR signals X are treated as spikey sparse outliers. RFI 
components can be extracted via solving: 

RXYXRXR
XR,

    s.t.        minarg      ˆ ,ˆ 1* . 

where 
*R is the nuclear norm of R� (approximating its 

rank) while�
1X 1 entry norm of X� (approximating 

its sparsity level). The competition between the rank of R 
and the sparsity of X encourages a clustering behavior, 
leading to the separation between SAR and RFI 
components. In all 4 data sets, RFI extraction can be 
achieved blindly without the need of any prior information! 
�

5.�EXPERIMENTAL�RESULTS�
This section presents the RFI mitigation performance of 

all four algorithms as mentioned in Section 4. Fig. 2 shows 
the results from the simulated radar data set that are injected 
with the simulated RFI data. The radar signal to RFI energy 
ratio in this case is –30 dB. Fig. 2a shows the spectral 
contents of the original data, RFI data, and RFI-
contaminated radar data. Fig. 2b shows the SAR image of 
the simulation scene without noise. Fig. 2c shows the SAR 
image formed using the RF-contaminated radar data. Figure 
2d-g shows the recovered SAR images using the notch 
filtering, the eigensubspace, the low-rank and sparse 
recovery, and the model-based sparse recovery techniques, 
respectively. The baseline notch filtering achieves a 
processing gain of 15.47 dB. The eigensubspace achieves a 
lowest performance among the algorithms, with only 3.02 
dB of processing gain. The simultaneous low-rank and 
sparse recovery achieves an impressive processing gain of 
24.42 dB. However, a few smallest targets in the scene are 
not discernable in the SAR of Fig. 2f. Finally, thanks to 
effective modeling, the model-based sparse recovery 
technique achieves a highest processing gain of 27.45 dB. 
All 30 targets in the SAR image of Fig. 2g are discernable.  

Fig. 3 depicts the results using radar data from the ARL 
BoomSAR injected with measured RFI from the urban 
environment. The radar signal to RFI energy ratio in this 
case is also set at –30 dB. The results from this real data 
experiment also show that the low-rank and sparse recovery, 
and the model-based sparse recovery techniques achieve the 
highest processing gains of 19.43 and 18.0 dB, respectively. 
In this realistic scenario, modeling accuracy is inexact, and 
the blind RPCA approach turns out to be more effective.   

Fig. 4 compares the RFI objective suppression 
performance in the SAR imagery (simulated data) domain 
using the four techniques over a large range of RFI 
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bandwidth setting, with the SAR to RFI signal ratio is fixed 
at –30 dB. The processing gain curves illustrated in Fig. 4 
show that both the low-rank and sparse recovery, and the 
model-based sparse recovery exhibit a much higher level of 
robustness. Even with the very challenging case of RFI to 
SAR bandwidth ratio of 30%, they achieve a processing 
gain of approximately 15 dB.  

Fig. 5 compares the RFI objective suppression 
performance of the four techniques in the SAR imagery 
domain using real radar data from the ARL BoomSAR and 
real RFI data with various settings of SAR to RFI signal 
ratio. Both the model-based sparse recovery and the RPCA 
techniques achieve good performance and outperform 
others over a wide range of SNR. 

 
6.�CONCLUSION�

This paper presents our first step in designing a standard 
SAR and RFI data set and the performance metrics for the 
evaluation of RFI suppression in low-frequency UWB radar 
applications. This framework allows us understand the 
strengths and limitations of various RFI mitigation 
algorithms, leading to the development of more robust 
solutions for the congested spectrum challenge, which is the 
most critical challenge for low-frequency UWB radar.  

We also present the initial performance comparison 
(both subjectively and objectively) using four different RFI 
mitigation techniques with our common data sets: 
simulation and real data from ARL UWB SAR radar. An 
early observation in this evaluation process is that RPCA 
(where RFI makes up the low-rank components while SAR 
signals play the role of sparse outliers) with its additional 
discriminative power offers the best RFI suppression 
performance. Its performance is surprisingly comparable to 

that of model-based sparse recovery technique, which 
requires accurate prior information on the radar signals as 
well as RFI characteristics.  
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Figure�2. RFI suppression performance using simulation 
SAR and RFI data (SNR= –30 dB). (a) Spectrum of 
SAR, RFI, and SAR plus RFI signals. (b) Original SAR 
image. (c) SAR image with RFI noise; SNR = –13.47 dB 
(d) SAR image (notch filtering): processing gain = 15.47 
dB; SNR = 2.0 dB. (e) SAR image (PCA): processing 
gain = 3.02 dB; SNR = –10.45 dB. (f) SAR image 
(RPCA): processing gain = 24.42 dB; SNR = 10.95 dB. 
(g) SAR image (model-based sparse recovery): 
processing gain = 27.45 dB; SNR = 13.98 dB. 
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Figure�3. RFI suppression performance using data from 
the ARL BoomSAR radar and real RFI data (raw SNR= –
30 dB). (a) Spectrum of SAR, RFI, and SAR plus RFI 
signals. (b) Original SAR image. (c) SAR image with RFI 
noise; SNR = 17.97 dB (d) SAR image (notch filtering): 
processing gain = 13.72 dB; SNR = –4.4 dB. (e) SAR 
image (PCA): processing gain = 9.9 dB; SNR = –8.1 dB. 
(f) SAR image (RPCA): processing gain = 20.3 dB; SNR 
= 2.35 dB. (g) SAR image (model-based sparse 
recovery): processing gain = 19.0 dB; SNR = 1.03 dB. 
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Figure� 4. RFI objective suppression performance in 
the SAR imagery in the SAR imagery (simulated data) 
domain using the four techniques over a large range of 
RFI bandwidth settings.  
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Figure�5. RFI objective suppression performance in the 
SAR imagery in the SAR imagery domain using real 
radar data from the ARL BoomSAR and real RFI data 
with various settings of SAR to RFI signal ratio. 
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