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ABSTRACT

This paper analyzes the Cramér-Rao Bound associated with
the estimation of certain sparse hyper-parameters in the
Sparse Bayesian Learning (SBL) framework, that crucially
control the sparsity of the desired signal. The CRB is shown
to exhibit saturation with respect to the number of mea-
surements, i.e., it can be lower bounded by a non-negative
quantity that does not go to zero even when the number of
measurements tends to infinity. Moreover, the CRB cor-
responding to the nonzero and zero elements of the sparse
hyper-parameter can exhibit different behaviors. While the
CRB for the non-zero elements always saturate regardless
of the type of dictionary, saturation of the CRB for zero ele-
ments provably happens when the dictionary has normalized
columns. For an unnormalized dictionary, singular values of
certain sub-dictionaries determine if saturation can happen,
prompting future research into this interesting phenomenon.
1

Index Terms— Sparse Bayesian Learning, Cramér-Rao
Bounds, Compressed Sensing, hyper-parameter estimation,
mean squared error.

1. INTRODUCTION

Sparse Bayesian Learning (SBL) [1, 2, 3, 4] constitutes an
important family of Bayesian algorithms where the goal is to
estimate a sparse signal x € F, from compressed measure-
menty € FM acquired as

y=Ax+w €))]

Here A € FM*N (M < N) denotes an underdetermined dic-
tionary and w € FM*! denotes the additive noise. Through-
out this paper, F can be either the set of real (R) or complex
(C) numbers. Unlike traditional Compressed Sensing algo-
rithms [5, 6] that only exploit the sparsity of x to solve the
ill-posed problem (1), SBL algorithms impose a suitable prior
distribution on x (that also models its sparsity) and computes
the corresponding posterior estimate. Alongside recovering
x, SBL algorithms also allow estimation of certain hyper-
parameters characterizing the prior distribution of x that cru-
cially control its sparsity as well as correlation structure [7].
The authors in [8] investigated fundamental performance
limits of the SBL framework by deriving appropriate Cramér
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Rao Bounds (CRB) on the mean-squared error (MSE) of SBL
estimators for x and associated hyper-parameters. However,
the analytical behavior of these bounds as a function of num-
ber of measurements M, have not been investigated so far.
Of particular interest would be to understand if increasing
the number of measurements M enables us to estimate the
hyper-parameters with proportionately decreasing MSE that
converge to 07 As we will show in this paper, the answer is a
surprising “no”, implying that even when M goes to infinity,
the CRB does not decrease below a certain positive quantity,
and it essentially saturates. Hence, even with infinite mea-
surements, no unbiased estimator exists that can exactly re-
cover the hyper-parameter. We mathematically characterize
this saturation behavior of the CRB corresponding to both
zero and nonzero elements of the sparse hyper-parameter.
Related Work. Cramér-Rao Bounds for estimating sparse
signals in presence of noise have been derived in [9, 10].
However, these results do not consider a stochastic model (or
prior) for x and hence cannot be applied for analyzing SBL.
In [8], for the first time, CRB expressions for the SBL frame-
work were derived, assuming different statistical models. In
[11], the authors proved that the sparse hyper-parameter can
be identifiable even when the number of non-zero elements
of x exceed M, and derived corresponding CRB expressions.
This paper conducts further analysis of the CRB for sparse
hyper-parameters, and mathematically justifies its saturation
behavior (which manifests differently for the non-zero and
zero elements).

Notations. Throughout this paper, (.)7, (.), (.)* represent
matrix transpose, Hermitian, and complex conjugate opera-
tors, respectively. Furthermore, o, ®, ® denote Hadamard,
Khatri-Rao and Kronecker products, respectively.

2. STATISTICAL MODEL FOR SBL

Assume that the signal x is a random vector distributed as
x ~ FN(0,P) where P = diag(p1,p2,- - ,pn), and we
denote p = [p1,--- ,pn]7T as the vector of hyper-parameters,
representing the power of the elements of x. The vector p is
assumed to be sparse where S denotes the support of p, with
|S| = K, i.e., p contains only K nonzero numbers. Further-
more, let w represent white Gaussian noise with distribution
FAN (0,02 1), which is uncorrelated with x. We henceforth
assume that the noise variance o2 is also known. Under these
assumptions, one can write the probability density function
(pdf) of y as

pyp(yiP) = [(20)Y (det R)] e ™ RTY - (9)

ICASSP 2017



where R is the covariance matrix of the random variable y,
given by
R = APAY 521,
andnp = 1 forF = C, and np = % forF =R.
In SBL, both the signal x, and the hyper-parameter p can
be recovered by respectively solving the so-called Type I, and
Type II estimation problems. In this paper, we are primarily

interested in estimating the underlying hyper-parameter p that
characterize the signal distribution (as well as its sparsity).

2.1. Review of Cramér Rao Bounds For Hyperparameter
Estimation

It is well known that the Cramér Rao Bound (CRB) serves as a
fundamental lower bound on the Mean Squared Error (MSE)
of any unbiased estimator for a (deterministic) parameter. In
[8], various CRB expressions (such as Hybrid, Bayesian and
Marginalized CRBs) are derived under different statistical as-
sumptions and models. Since our goal in this paper is to
analyze the CRB for the hyperparameter p, we consider the
marginalized CRB (MCRB) for p derived in [8]. The authors
in [8] also show that among all CRB expressions, the MCRB
provides the tightest lower bound.

The MCRB for p can be derived using the marginalized
distribution of y given by (2) and assuming that the noise
power o2 is known. In this case, p is the only unknown
parameter characterizing py.p(y; P), and the corresponding
Fisher Information Matrix (FIM) J can be shown to be of the
form [11]

J = AL WA, 3)

where A, = A*© A, W =R T @R !. The matrix A,
denotes the Khatri-Rao product (or column-wise Kronecker
product) of the dictionary A and crucially controls important
properties of J. By considering the rank of A.,, the authors
in [11] have been able to provide the following necessary and
sufficient condition under which the MCRB for p exists:

Theorem 1. [11] The FIM J given in (3) is non-singular if
and only if N = rank(A,).

Hence, as long as N = rank(A.,) (which can imply N =
O(M?) for certain dictionaries), the CRB exists and can be
used to lower bound the MSE of any unbiased estimate of p.

3. SATURATION OF THE MCRB

For many overdetermined estimation problems (N < M), the
CRB typically converges to 0 asymptotically as the number of
measurements M — oo, implying that the parameter can be
estimated with zero MSE (as M — o0) using appropriate es-
timators (such as Maximum Likelihood Estimator). However,
we will now show that the MCRB for SBL (that typically
involves a compressive measurement model with N > M)
can saturate at a value strictly bounded away from zero, even
when M — oo. This behavior implies that it is not possible to
find an unbiased estimator that can recover p with zero MSE
as the number of measurements grows infinitely large. In this

regard, we will show that the non-zero and zero elements of
p exhibit different saturation behavior as follows:

(i) CRB of Non-Zero Elements: For all values of NV and M
and all choices of the dictionary A, the CRB corresponding to
the nonzero elements of p always exhibit a saturation effect,
meaning that we can find a lowerbound for the CRB (in terms
of M) that tends to a strictly positive limit as M — oo.

(ii) CRB of Zero Elements: The CRB corresponding to the
zero elements of p can be lower bounded by a non zero quan-
tity (even when M — o00) as long as the columns of the dic-
tionary A are normalized. If the columns of A are not nor-
malized, saturation of the CRB is shown to be determined by
the singular values of certain submatrices of A.

3.1. Saturation of the CRB Corresponding to Nonzero El-
ements

Let C = J~!, where the ith diagonal element of C provides
a lower bound on the MSE of any unbiased estimator for [p);,
i.e., given any unbiased estimate p(yy) (which is a function of
only the measurement y) of p, we have

Ey|[pl: — [B(y))il* > [Clu

The following theorem shows that if ¢ € S (i.e., [p]; > 0),
then [C],; is strictly bounded away from zero.

Theorem 2. Consider the model (1), where the measurement
y is distributed according to (2). If N = rank(A.,), the CRB
corresponding to the unknown parameter p satisfies

[Cli > ng'p, €S
Proof. Since N = rank(A.,), J is invertible and the CRB
exists. Following the analysis in [12] and (3), it can be shown
that ith diagonal element of the C can be written as

i1

(Clit = T o W22

where a£2 =a; ®a,,

ACD = [a0) a®) ...l QG+

(N)
ca » dca’» yAca Hc CYA

7

In other words, Agi) contains a total of N — 1 columns that

excludes the column a((fa). Furthermore, given any matrix B
with full column rank, Il = I-B(B#B)~!B# denotes the
projection onto the orthogonal complement of range space of
B. Therefore, we can write

n [CI7" = (al) (W—
WAL (AL WAL D) (AL T W)al)
< (al)) " Waly) = |afR™"a;[. “)
where the last equality can be verified using algebraic prop-

erties of the Kronecker product. Since ¢ € S, we can decom-
pose R as

R = AZPZA{{ —|—piaiaH + O'2 I

7 w
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where A; is comprised of columns of A indexed by S\ %,
and P; is a diagonal matrix composed of the corresponding
elements of p. Let us denote R; := piaiaf + anI. Using
Woodbury’s matrix identity [13], we have

R™ =R —R'A(P' + AR A) AR
5)

We can further use the Sherman-Morison [14] formula to get

R BT
L+ 0w [laq | ?p;
Therefore,
HR, ~lp. — laill>  optllaill're  oRPllall?
a; vy a = -3 5 — =) 3
0w 1toulaillPpi 14 ow”l|al?p:

Using (4), (5), and the fact that
allR7TA (P + AHRTTA)TTARR 1a, > 0,

we conclude that

Uiy
C ..
[Clis 2 lafR~1a,|?
-1 2
g — ! (03; + ||a¢||2p¢) ©)
~ R a2 |2 |?
>z 'p? (Bn>)

where the label B,,., stands for the bound for nonzero entries.
The bounds for zero entries (B, B,2) will be studied later.
O

Remark 1. The theorem indicates that for all admissible val-
ues of M, N and sparsity K, the CRB corresponding to the
non zero elements of p is strictly greater than 0, regardless of
the structure of the dictionary. This happens in both overde-
termined (N < M) and underdetermined settings (N > M),
implying that the non zero elements of p cannot be estimated
with zero MSE even when M — oo.

Remark 2. For the special case when AT A = MT (which
holds only if N < M), the authors in [8] show that the in-
equality in (6) holds with equality. Our result generalizes this

observation for any dictionary A and for all values of M and
N.

3.2. Lower Bounds on the CRB Corresponding to Zero
Elements

We will now show that for ¢ ¢ S (i.e. [p]; = 0), saturation of
the CRB may or may not happen, depending on the structure
of the dictionary A and the normalization of its columns.

3.2.1. Saturation Effect for Normalized Dictionaries
Let A be a dictionary with normalized columns such that
lai3=¢ 1<i<N

where c is a constant that does not depend on M or V. In this
case, the CRB corresponding to the zero elements of p will
saturate, as given by the following theorem:

Theorem 3. Consider the model (1), where the measurement
y is distributed according to (2), and the columns of A are
normalized such that ||a;||3 = ¢,1 < i < N where c is
a universal constant that does not depend on M or N. If
N = rank(A..), the CRB corresponding to the unknown pa-
rameter p satisfies

Proof. Similar to the proof of Theorem 2, we use Woodbury’s
matrix identity on R, but in a different form. In particular,
we can write

R l=0

w

21— AATA + 2P 1) TAH)

where A is the matrix comprised of columns of A indexed by

S,and P is a diagonal matrix containing only the non zero
elements of p. Since i ¢ S, we have

allR;'a; = 0 ,%all(1 - A(AA + 2P 1) 1AM ),
< oy,

which follows from the fact that
al A(AHA + 2P 1) 1AHa, > 0.

Using (4), for i ¢ S, we can always write

4,,—1 4, —1
Owllp Owllp
C > w = B
[ ]u_ ||az||4 02 ( zl)

O

Notice that the first inequality in (B,;) provides a valid
lower bound for any dictionary A (regardless of normaliza-
tion of columns). However, for unnormalized dictionaries, if

4 -1
lla;||? grows monotonically with M, the lower bound G”“;nﬁ T
in (B,1) converges to a trivial value of 0 (as M — oo) which
does not shed any light into the asymptotic behavior of the
CRB.

3.2.2. Lower Bound for Unnormalized Dictionaries, and
K>M

To better understand the behavior of CRB for dictionaries
with unnormalized columns, we consider a special case when
K > M and the non-zero hyper-parameters are all equal to
p,ie, [p]i = pfori € S, and [p]; = 0fori ¢ S. We
further assume that A has full row rank M (which is possible
since K > M). Consider the singular value decomposition of
AAH as AAH = UXUH where & = diag(oy,---,0n),
and 01 > 09 > --- > o > 0. Thus, we can write

R =pAAY + 21 =U]px + o2 1JUH
Therefore, we have

R ! =Uuru”
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where I" = diag(pmigg) ) p@iaﬁ) ) paMlJrgﬁ] ). Hence,
2
_ _ a;
al'R™'a; < opnax (R [Jasf* = paLﬂaQ
w

with 0. (.) denoting the maximum singular value of a ma-
trix. Using (4), we get

-1 (p012rlin<A) + 0121;)2

>
[C]Zl - 77]F ||az||4 (BZQ)

1 2. (A), and Omin(.) indicates the smallest
nonzero singular value of a matrix.

where oy = o2

Proposition 1. If ‘7"‘%_(”‘&) = O(1) (i.e. does not scale with

M or N), [Cl;; in (B,2) fori ¢ S, will be bounded below by
a positive quantity as M — oo.

Therefore, when the columns A are not normalized, sat-
uration may or may not happen. This depends on the asymp-
totic behavior of the smallest singular value of A with respect
to its column norm, as we increase the sizes M, N and K.

4. SIMULATIONS

We conduct numerical experiments to examine the behavior
of the CRB for zero and nonzero elements of p, as we in-
crease the size of dictionary A. We generate a matrix Ag
with i.i.d. standard normal entries, and let A be a submatrix
of A by choosing the first M (resp. N) rows (resp. columns)
of Ag. In each simulation, we generate p such that the sup-
port corresponding to a smaller sparsity level K is a subset of
the support corresponding to the larger value of K. We con-
sider L = 20 1. i. d. realizations of the vector x with the same
support. This essentially scales the CRB values by a factor of
% and does not affect our analysis, yet it can slightly improve
the performance of our estimator (discussed later), whose er-
ror is compared with CRB. The noise variance is assumed to
be o, = 0.05, and all the nonzero values of p are equal to 1.

We consider three different experimental settings, and for
each case, we consider both normalized and unnormalized A.
In “Setting 17, we fix N = 100, K = 10 and increase M.
In “Setting 2”, we also let i and [NV grow as we increase M,
such that K = 2], N = 4M. “Setting 3” differs from
“Setting 2” only in the fact that K can be larger than M. In
particular, we let K = 2M, N = 4M. In all cases, we let
the starting M to be M = 20, to ensure nonsingularity of
the FIM. The experimental results for each scenario are plot-
ted in Figure 2, where we compare the CRB with the lower-
bounds established in this paper. In Fig. 1 (a,b) we also show
the Mean Square Error (MSE) of the Maximum Likelihood
(ML) estimator, and compare it with the CRB corresponding
to Setting 1. The MSE of the ML estimator is computed by
averaging over 2000 Monte-Carlo simulations for each M.
We observe that the saturation effect always happens for both
zero and non-zero elements when the dictionary is normal-
ized, thereby validating our theoretical claims. When A is
not normalized, the CRB corresponding to the zero elements
seem to decrease monotonically for Settings 1 and 2 (where
we have K < M). In future, we will explore the behavior of
the CRB of zero elements in greater detail.
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Fig. 1. Comparisons between the CRB, the lower bounds es-
tablished in this paper (indicated by their corresponding la-
bels), and the MSE of ML algorithm. The label “(z)” indi-
cates zero elements and “(nz)” represents nonzero elements.
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Fig. 2. Comparison between the CRB, and the lower bounds,
established in this paper. The labels in this Figure are the
same as those in Fig. 1.

5. CONCLUSION

We considered the Marginalized Cramér Rao bound asso-
ciated with hyper-parameter estimation in Sparse Bayesian
Learning. We showed that the CRB corresponding to the
nonzero elements is always bounded below by a positive
quantity which does not go to zero as we increase the number
measurements, thereby exhibiting saturation. However, for
the zero elements, saturation of the CRB may or may not
happen, depending on the column norm as well as the alge-
braic structure of the dictionary. We will further investigate
this phenomena in future by deriving suitable upper bounds
for the CRB corresponding to zero elements.
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