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ABSTRACT

This paper presents an efficient optimization technique for

super-resolution two-dimensional (2D) direction of arrival

(DOA) estimation by introducing a new formulation of atomic

norm minimization (ANM). ANM allows gridless angle es-

timation for correlated sources even when the number of

snapshots is far less than the antenna size, yet it incurs huge

computational cost in 2D processing. This paper introduces

a novel formulation of ANM via semi-definite programming,

which expresses the original high-dimensional problem by

two decoupled Toeplitz matrices in one dimension, followed

by 1D angle estimation with automatic angle pairing. Com-

pared with the state-of-the-art 2D ANM, the proposed tech-

nique reduces the computational complexity by several orders

of magnitude with respect to the antenna size, while retaining

the benefits of ANM in terms of super-resolution performance

with use of a small number of measurements, and robustness

to source correlation and noise. The complexity benefits are

particularly attractive for large-scale antenna systems such as

massive MIMO and radio astronomy.

Index Terms— Two-dimensional DOA, atomic norm

minimization, semi-definite programming, decoupled Toeplitz

1. INTRODUCTION

The problem of 2D DOA estimation, as an instantiation of

multivariate spectral analysis, arises in many applications

such as azimuth-elevation angle estimation using 2D arrays

and transceiver design in MIMO communications. Despite

of the large body of literature [1], existing techniques can

be quite complex for implementation in emerging large-

scale antenna systems such as massive MIMO, where super-

resolution 2D angle estimation need to be performed with

low computing time from a small number of measurements.

Subspace methods such as MUSIC and ESPRIT are pop-

ular for super-resolution 2D DOA estimation [2, 3, 4]. How-

ever, they all hinge on the sample covariance, which requires

the number of snapshots to be larger than the antenna size.
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Besides, they are sensitive to signal correlation and noise, and

may fail for coherent sources [1].

Advances in compressed sensing (CS) suggests to exploit

source sparsity for frequency or angular estimation [5, 6]. CS

enables DOA estimation even from a single snapshot of mea-

surements, regardless of source correlation. However, the an-

gular estimates are confined on a finite-resolution grid, and

the accuracy is sensitive to off-grid source mismatch [7].

Recently, a new line of gridless CS for spectral analysis is

developed via atomic norm minimization (ANM) in the form

of semi-definite programming (SDP) [8, 9]. It is a structure-

based optimization approach where the Vandermonde struc-

ture of the array manifold is captured in the SDP via a Toeplitz

matrix. It has been extended to the 2D case by exploiting a

two-level Toeplitz structure [10, 11], which enjoys the bene-

fits of the ANM approach in terms of super-resolution from

single-snapshot measurements, and resilience to source cor-

relation. However, the computational load is heavy, which

becomes near intractable for large-scale antenna systems.

This paper presents a new formulation of ANM by intro-

ducing a new atom set that naturally decouples a two-level

Toeplitz matrix into two Toeplitz matrices in one dimension.

Accordingly, a new SDP formulation is developed for the de-

coupled ANM (D-ANM), which has a much reduced prob-

lem size and hence markedly improved computational effi-

ciency. The time complexity is several orders of magnitude

lower than that based on two-level Toeplitz, while other ben-

efits of ANM are preserved in terms of accuracy, resolution

and use of a small number of snapshots. Analytic proof and

simulations are presented in the paper to validate the proposed

D-ANM for low-complexity 2D DOA estimation.

2. RELATION TO PRIOR WORK

This work belongs to the ANM-based optimization approach

to spectral estimation [9, 8, 12, 13], which has emerged as an

effective alternative to traditional statistics-based approaches

when the number of measurements is small. While SDP for-

mulations for ANM are mostly done for 1D spectral estima-

tion, this work is closely related to the recent 2D results in

[10, 11]. Therein, the 2D array manifold matrix is vectorized

into a long vector, whose structure is expressed in a SDP for-

3071978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



mula through a two-level Toeplitz matrix, followed by two-

level Vandermonde decomposition. For an N ×M rectangu-

lar antenna array, the size of the SDP is (NM + 1) [10, 11].

This work presents a new SDP formula for decoupled ANM

(D-ANM) with a small size of (N + M), which drastically

reduces the run time. The D-ANM not only avoids the cum-

bersome vectorization step in [10, 11], but also enables the

use of simple one-level Vandermonde decomposition and au-

tomatic angle pairing. Hence, both the SDP formulation for

ANM and the ensuing Vandermonde decomposition for 2D

DOA estimation are different from those in [10, 11].

3. SIGNAL MODEL

ConsiderK far-field narrowband waveforms s⋆ = (s⋆1, . . . , s
⋆
K)T

that impinge on an N × M uniform rectangular array with

N and M elements along x-direction and y-direction re-

spectively. The corresponding DOAs are denoted by θ
⋆
x =

(θ⋆x,1, . . . , θ
⋆
x,K) and θ

⋆
y = (θ⋆y,1, . . . , θ

⋆
y,K) respectively. The

noise-free baseband model for the array output matrix is

X(t) =

K
∑

k=1

s⋆k(t)aN (θ⋆x,k)a
H
M (θ⋆y,k) (1)

where aN (θx) of length N is the 1D array response vector

in x-direction with a Vandemonde structure along θx [1], and

aM (θy) of length M is similarly defined.

For clear exposition, we consider a single snapshot, thus

dropping time t. LettingAN (θ⋆
x) = [aN (θ⋆x,1), . . . , aN (θ⋆x,K)],

AM (θ⋆
y) = [aM (θ⋆y,1), . . . , aM (θ⋆y,K)], and S⋆ = diag(s⋆),

(1) can be concisely written as

X = AN (θ⋆
x)S

⋆AH
M (θ⋆

y). (2)

The goal of 2D DOA estimation is to recover θ
⋆
x and θ

⋆
y from

observations of X. Here we focus on the noise-free signal

structure to formulate an optimization approach.

4. THE ATOMIC NORM APPROACH

This section reviews the atomic norm minimization (ANM)

approach to 2D DOA estimation in [10, 11]. Using the Kro-

necker product ⊗, the signal X can be vectorized as [10]

x = vec(X) =

K
∑

k=1

s⋆ka
∗
M (θ⋆y,k)⊗ aN (θ⋆x,k) =

K
∑

k=1

ska(θ
⋆
k)

(3)

where θ = (θx, θy), and a(θ) = a∗M (θy) ⊗ aN (θx) is an

extended array response vector of length NM .

The atom set AV is defined as

AV = {a(θ), θ ∈ [0, 2π]× [0, 2π]}. (4)

Let T2D(u), defined by its first row u of length NM , de-

note a two-level Hermitian Toeplitz matrix constructed from

the two-level Vandemonde structure of a(θ) [10]. Then the

atomic norm of x can be calculated via SDP:

‖x‖AV
= inf

{

∑

k

|sk|
∣

∣

∣

∣

∣

x =
∑

k

ska(θk), a(θ) ∈ AV

}

= min
u,v

{

1

2

(

v + trace
(

T2D(u)
))

}

s.t.

(

v xH

x T2D(u)

)

� 0. (5)

It has been shown that if x is composed of only a few

adequately-separated sources, then (θ⋆
x, θ

⋆
y) can be recovered

by computing ‖x‖AV
from (noiseless, noisy or partial) ob-

servations of x [10]. The SDP in (5) results in the two-level

Toeplitz matrix T2D(u), which contains the angular informa-

tion from both dimensions and can be processed via two-level

Vandemonde decomposition to yield (θ⋆
x, θ

⋆
y) [11].

The main issue of the vectorization-based ANM in (5) is

its high complexity. Due to the vectorization in (3), the matrix

size in the SDP constraint is (NM + 1)× (NM + 1), which

incurs high complexity in both computation and memory as

N and M become large. We tried simulations on a PC for

N = M = 32, in which case the SDP calculation could

not finish in two days. For large-scale antenna systems, an

efficient implementation of the ANM principle is motivated.

5. 2D DOA ESTIMATION VIA DECOUPLED ANM

This section presents the main results, namely a decoupled

ANM formulation for efficient 2D DOA estimation.

5.1. Decoupled ANM and its SDP reformulation

Recall the signal model in (1) and (2). Alternative to the vec-

torized atom set in (4), we adopt a new atom set AM as

AM =
{

aN (θx)a
H
M (θy), θx ∈ [0, 2π], θy ∈ [0, 2π]

}

= {A(θ), θ ∈ [0, 2π]× [0, 2π]} .
(6)

Our approach to find (θ⋆
x, θ

⋆
y) from X is to find the fol-

lowing atomic norm:

‖X‖AM
= inf

{

∑

k

|sk|
∣

∣

∣

∣

∣

X =
∑

k

skA(θk), A(θ) ∈ AM

}

.

(7)

This is an infinite programming problem over all feasible

θ. By reformulating (7) via SDP, our main results follow.

Theorem 5.1 Consider an N ×M data matrix X given by

X =
∑K

k=1 s
⋆
kA(θ⋆

k). (8)

Define the minimal angle distances as ∆min,x = mini6=j | sin θ⋆x,i−
sin θ⋆x,j| and ∆min,y = mini6=j | sin θ⋆y,i−sin θ⋆y,j |, which are
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wrapped distances on the unit circle. If they satisfy

∆min,x ≥ 1.19

⌊(N − 1)/4⌋ , ∆min,y ≥ 1.19

⌊(M − 1)/4⌋ , (9)

then it is guaranteed that (8) is the optimal solution to (7).

Further, it can be efficiently computed via the following SDP:

‖X‖AM
= min

ux,uy

{

1

2
√
NM

(

trace
(

T(ux)
)

+trace
(

T(uy)
)

)}

s.t.

(

T(uy) XH

X T(ux)

)

� 0 (10)

where T(ux) and T(uy) are one-level Hermitian Toeplitz

matrices defined by the first rows ux and uy respectively.

Remark 1: Angular information. At the optimal ûx, the N×
N Toeplitz matrix T(ûx) reveals θ⋆

x via

T(ûx) = AN (θ⋆
x)DxA

H
N (θ⋆

x), Dx � 0 is diagonal.
(11)

Similarly, θ⋆
y is coded in the M ×M matrix T(ûy). Hence,

after the SDP in (10), 2D DOA information can be acquired

via Vandemonde decomposition on these one-level Toeplitz

matrices, which is much simpler than the two-level Vande-

monde decomposition needed in [10, 11], and there are many

mature techniques such as subspace methods, matrix pencil

[11] and Prony’s method [13].

Remark 2: Decoupling. The main benefit of the new result

(10) is its low complexity via a decoupled formulation for

ANM. Instead of coupling the 2D DOA via vectorization to

form a constraint of size (NM +1)× (NM +1) in (5), (10)

decouples the angular information into two one-level Toeplitz

matrices, which markedly reduces the constraint size in SDP

to (N +M)× (N +M).
Remark 3: Separation. Conditions (9) limited the minimal

separation for successful angle identification. More discus-

sions can be found in [14].

5.2. Sketch of proof

The proof for Theorem 5.1 will be detailed in a journal ver-

sion. It is outlined next under the page limit.

Define the dual norm of ‖ · ‖AM
for ∀Q ∈ CN×M as

‖Q‖∗AM
= sup

‖X‖AM
≤1

〈Q,X〉R (12)

where 〈·, ·〉 denotes the Frobenius inner product, and 〈·, ·〉R =
ℜ{〈·, ·〉} keeps the real part.

Following standard Lagrangian analysis as in [8, 15], one

can show that if there exists a dual polynomial

Q(θ) = 〈Q,A(θ)〉, Q ∈ C
N×M , A(θ) ∈ AM (13)

satisfying the conditions (bounded interpolation property)

Q(θ⋆
k) = sign(s⋆k), ∀θ⋆

k ∈ Ω;

|Q(θ)| < 1, ∀θ /∈ Ω,
(14)

then it is guaranteed that the optimal solution to (7) is unique,

where Ω = {θ⋆
1, . . . , θ

⋆
K} collects all supports of X. Follow-

ing a similar procedure as in [10], it is not difficult to construct

a dual polynomial that satisfies the above conditions.

Then, denote the optimal solution of (10) as SDP(X).
On one hand, for arbitrary atomic decomposition of X =
∑

k skA(θk), it is easy to verify the semi-definite contraint in

(10) by letting T(ux) =
∑

k |sk|
√

M
N
aN (θx,k)a

H
N (θx,k) and

T(uy) =
∑

k |sk|
√

N
M
aM (θy,k)a

H
M (θy,k); hence, SDP(X) ≤

‖X‖AM
.

On the other hand, from the semi-definite condition, X

lies in the column space of T(ux) and row space of T(uy).
Similar to [16], using Schur completion lemma and geometry

averaging inequality, one can verify SDP(X) ≥ ‖X‖AM
.

5.3. 2D DOA Estimation based on decoupled ANM

In practice, X is observed implicitly. We consider a linear

observation model in the presence of an additive noise W:

Y = L(X) +W (15)

where L(·) represents linear mixing, with possible missing

entries and down-sampling. Given Y, and exploiting the sig-

nal structure (10), X can be estimated via regularization

min
X

λ‖X‖AM
+ ‖Y − L(X)‖2F (16)

where λ ≥ 0 is a weighting scalar. To find the 2D DOA, it is

adequate to find the two desired Toeplitz matrices via

min
ux,uy,X

λ

2
√
NM

(

trace
(

T(ux)
)

+ trace
(

T(uy)
)

)

+ ‖Y − L(X)‖2F

s.t.

(

T(uy) XH

X T(ux)

)

� 0.

(17)

As mentioned in Remark 1, mature 1D DOA estimators can

be employed to obtain the estimates θ̂x and θ̂y from the opti-

mal T(ûx) and T(ûy), in a decoupled manner.

Like all 2D DOA estimators, a pairing step is critical to

find (θ̂x,k, θ̂y,k) pairs, ∀k. Since we have X̂ at hand via (17),

we develop a simple angle pairing technique as follows.

1. Construct the array response matrix AN (θ̂x) from θ̂x.

2. Compute VM = D−1
x A

†
N (θ̂x)X̂, where (·)† denotes

pseudo-inverse and Dx is the diagonal matrix in (11)

obtained from Vandermonde decomposition of T(ûx).
In the noise-free case, VH

M = [v1, . . . ,vK ] is the same

as AM (θ⋆
y) up to phase ambiguity and global scaling.

3. Pair up θ̂y,k with θ̂x,ky
via maximum correlation:

ky = arg max
j∈[1,K]

∣

∣

∣

〈

aM (θ̂y,k),vj

〉
∣

∣

∣
, k = 1, . . . ,K.
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Fig. 1. Computing complexity: run time versus N (N = M ).

6. PERFORMANCE EVALUATION

6.1. Complexity analysis

As mentioned in Remark 2, in the vectorized ANM method

[10], the semi-definite constraint in (5) is of size (NM+1)×
(NM + 1). As a result, the SDP step for recovering the two-

level Toeplitz has time complexity O(N3.5M3.5 log(1/ǫ)),
where ǫ is the desired recovery precision [17]; the ensuing

step of two-level Vandermonde decomposition for angle esti-

mation and pairing has time complexity O(N2M2K) [11].

In contrast, our decoupled ANM formulation in (10) and

(17) has a constraint of smaller size (N+M)×(N+M). The

time complexity of the SDP step is O((N +M)3.5 log(1/ǫ)),
and that of the one-level Vandermonde decomposition and

pairing step is O((N2 + M2)K). The overall complexity

is reduced by an order of O(N3.5) for N = M .

Simulations of the run time are performed for a square ar-

ray with M = N , and K = 4 sources. The running speeds of

these two methods are plotted on a logarithmic scale versusN
in Figure 1. Our method exhibits a huge benefit in computa-

tional efficiency for large-scale arrays. When M = N = 22,

the running time of the vectorized ANM is 733.1842s, while

that of the decoupled ANM is only 1.4997s.

6.2. Recovery accuracy and noise performance

Montè Carlo simulations are carried out to evaluate the DOA

estimation performance of both ANM-based 2D DOA meth-

ods, with M = N = 16 and K = 4. Following SDP, the ma-

trix pencil method is used to carry out both one- and two-level

Vandermonde decomposition for DOA estimation [11, 4].

Figure 2 depicts the estimated 2D angles at a high signal

to noise ratio (SNR) of 20dB. All source angles are accurately

recovered, which confirms that both ANM methods correctly

capture the inherent signal structures in their formulations.

Figure 3 compares the average mean square error (MSE)

of the estimates sin θ̂ versus SNR, with reference to the
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Fig. 2. 2D DOA (SNR = 20dB).

-10 0 10 20 30
SNR (dB)

-8

-7

-6

-5

-4

-3

-2

-1

0

M
S
E
(s
in
θ̂
)
(L

og
ar
it
h
m
ic
)

Decoupled ANM
Vecrorized ANM
CRB

Fig. 3. Noise performance: MSE vs. SNR (N = M = 16).

Cramer-Rao bound (CRB) [18]. The MSE performance of

the proposed decoupled ANM is quite close to that of the

vectorized ANM, both approaching the CRB for large SNR.

7. CONCLUSION

This work presents a novel decoupled ANM approach to 2D

DOA estimation. By introducing a new atom set and decou-

pling the angular information onto lower dimension, we have

reduced the computational load by several orders of magni-

tude in array size, while retaining the benefits of ANM in

terms of gridless estimation, light measurement requirements

and robustness to signal correlation. Automatic angle pairing

is also developed. The proposed low-complexity optimization

technique can be extended to other high-dimensional spectral

estimation problems as well. Future work includes perfor-

mance analysis in the presence of data compression and noise.
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