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ABSTRACT

We investigate the problem of direction of arrival (DOA) estimation
using sparse linear arrays, such as co-prime and nested arrays, in the
case of missing data resulting from sensor failures. We introduce a
signal model where sensor failures occur after taking certain num-
ber of snapshots. We formulate a structured covariance estimation
problem by exploiting the special geometry of sparse linear arrays,
which also provides enhanced degrees of freedom. Numerical exam-
ples show that, by utilizing the information in both complete mea-
surements and incomplete measurements, our method achieves bet-
ter estimation accuracy than the traditional method using only com-
plete measurements.

Index Terms— DOA estimation, missing data, maximum like-
lihood, coprime array, nested array

1. INTRODUCTION

Sparse linear arrays, such as minimum redundancy arrays (MRA)
[1–3], nested arrays [4–6], and co-prime arrays [7–10], have the at-
tractive property of providingO(M2) degrees of freedom with only
M sensors. The extra degrees of freedom are exploited by construct-
ing an augmented covariance matrix from the difference coarray
model [11, 12]. Due to their dependence on the coarray geometry,
sparse linear arrays are more susceptible to sensor failures. If the
measurements from one or more sensors are missing, the coarray
structure will be partially destroyed, leading to performance degra-
dation and loss of degrees of freedom.

Tackling missing data is important in robust DOA estimation,
and many previous work has addressed the problem. Notably, in
[13], Larsson et al. proposed a Cholesky parameterization based
maximum likelihood estimator, and analyzed its asymptotic perfor-
mance. However, their model is based on uniform linear arrays
(ULAs), and requires a sequential failure pattern. In practice, any
sensor may fail, so the sequential assumption may not be true. Re-
cent advances in matrix completion [14, 15] and atomic norm mini-
mization [16, 17] also bring new methods to tackle the missing data
problem. By exploiting the low-rank property of the signal sub-
space, it is possible to extrapolate the missing data via semidefi-
nite programming (SDP). However, when the number of measure-
ments is large, the resulting SDP will be computationally expensive
to solve. In this paper, we consider the direction finding problem
using general sparse linear arrays with incomplete measurements.
We do not assume a sequential failure pattern. We focus on deriv-
ing an algorithm that utilizes the information in both complete mea-
surements and incomplete measurements based on the maximum-
likelihood approach. We first estimate the augmented covariance
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matrix by exploiting its Toeplitz structure, and then apply the MU-
SIC algorithm [18] to obtain the DOA estimates. We derive the
Cramér Rao bound (CRB) and confirm the efficacy of our algorithms
via numerical examples.

2. PROBLEM FORMULATION

We consider a sparse linear array whose sensors are located on a
uniform grid. We represent the sensor locations by the integer set
D̄ = {d̄1, d̄2, . . . , d̄M}, where M is the number of sensors. The
actual sensor locations di are given by d̄id0 for i = 1, 2, . . . ,M ,
where d0 denotes the grid size. Such an array can also be viewed as
a thinned uniform linear array (ULA) that consists of M0 = d̄M + 1
sensors. For example, a co-prime array whose sensors are located at
[0, 2, 3, 4, 6, 9]d0 can be viewed as a 10-sensor ULA with the 2nd,
6th, 8th, and 9th sensors removed.

We consider K far-field uncorrelated narrowband signals im-
pinging on the array from directions θ = [θ1, θ2, · · · , θK ]T . The
received the signal vectors are given by

y(t) = SAU(θ)x(t) + n(t), t = 1, 2, . . . , N, (1)

whereAU(θ) = [aU(θ1),aU(θ2), . . . ,aU(θK)] is the steering ma-
trix of a M0-sensor ULA [19]. S is a M ×M0 selection matrix,
where Smn is one if and only if the m-th sensor in the sparse lin-
ear array corresponds to the n-th sensor in the ULA, and otherwise
zero. x(t) is the source signal, and n(t) is the additive complex
white Gaussian noise. We assume that the source signals follow the
unconditional model [19], and there is no temporal correlation be-
tween each snapshot.

With the above assumptions, the covariance matrix is given by
R = E[y(t)yH(t)] = SRUS

T , where RU = AUPA
H
U + σ2

nI ,
P = diag(p1, p2, . . . , pK), and pk is the power of k-th source.
Therefore the covariance matrix of a sparse linear array is a com-
pressed version of the covariance matrix of a ULA. By vectorizing
R, we obtain

r = (S ⊗ S)(A∗U �AU)p+ σ2
ni, (2)

where r = vec(R), p = [p1, p2, · · · , pK ]T , and i = vec(I), ⊗
denotes the Kronecker product, � denotes the Khatri-Rao product
(i.e., column-wise Kronecker product), and vec(A) convertsA into
a column vector by stacking the columns of A [20]. Model (2) re-
sembles a measurement model with deterministic sources and noise,
and (S⊗S)(A∗U�AU) embeds a steering matrix of a virtual array
with enhanced degrees of freedom, whose sensor locations are given
by D̄co = {(d̄m − d̄n)|d̄m, d̄n ∈ D̄}. If D̄co consists of consec-
utive integers from −M0 + 1 to M0 − 1, we call the sparse linear
array complete. If a sparse linear array is complete (e.g., minimum
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redundancy arrays and nested arrays), it is possible to estimate the el-
ements inRU using rank enhanced spatial smoothing [4] or more so-
phisticated methods [21]. We are then able to identify more sources
than the number of sensors through RU. On the other hand, if a
sparse linear array is incomplete (e.g., co-prime arrays), we define
M̃0 as the largestM such that {−M+1, . . . , 0, . . . ,M−1} ⊂ D̄co.
In this case, we can recover only a M̃0×M̃0 submatrix ofRU using
similar methods. If M̃0 > M , we again are able to identify more
sources than the number of sensors.

We now consider the signal model with missing data. Without
loss of generality, we consider L sampling periods. During the first
period, we assume all the sensors are functioning normally. This
assumption is reasonable because if some sensors fail from the be-
ginning, we can simply remove them and form a new sparse linear
array whose sensors are all functional during the first period. During
the l-th (2 ≤ l ≤ L) period, some sensors fail and the measurement
data from these sensors are missing. Let Ml be the number of work-
ing sensors during the l-th period. Let Tl be a selection matrix of
size Ml ×M such that the (i, j)-th element Tl is one if and only if
the j-th sensor in the sparse linear array is the i-th working sensor
during the l-th period, and otherwise zero. For notational simplicity,
we define T1 = IM . After discarding the measurements from the
malfunctioning sensors, the snapshots taken during the l-th period
are given by

yl(t) = Tl[SAU(θ)x(t) + n(t)], (3)

for t = N1 + · · · + Nl−1 + 1, . . . , N1 + · · · + Nl−1 + Nl, where
Nl is the number of snapshots collected during the l-th period. The
total number of snapshots is denoted by N =

∑L
l=1Nl. Corre-

spondingly, we can collect L different sample covariance matrices
R̂l = 1/Nl

∑N1+···+Nl−1+Nl

t=N1+···+Nl−1+1 yl(t)y
H
l (t), l = 1, 2, . . . , L. We

also define their expectations as

Rl = E[R̂l] = TlSRUS
TT T

l + σ2
nI, (4)

whose vectorized versions are given by

rl = vec(Rl) = (TlS ⊗ TlS)(A∗U �AU)p+ σ2
ni. (5)

Because of the missing data, (TlS⊗TlS)(A∗U�AU) no longer
embeds a desired virtual array steering matrix and existing methods
cannot be directly applied. If we use only R̂1 for estimation, we
lose much information provided in R̂l (2 ≤ l ≤ L). Therefore
an estimator that utilizes all the information in R̂l (1 ≤ l ≤ L) is
desired.

3. ESTIMATION IN THE PRESENCE OF MISSING DATA

3.1. Ad-hoc Estimator

The ad-hoc estimator for our signal model is inspired by redundancy
averaging [22, 23], and is an extension of the ad-hoc estimator in
[13]. Let Vk = {(m,n)|d̄m − d̄n = k, d̄m, d̄n ∈ D̄}. Let Am,n

denote the set of snapshot indices when both the m-th and the n-th
sensor are working. We define

uk =

∑
(m,n)∈Vk

∑
t∈Am,n

ym(t)y∗n(t)∑
(m,n)∈Vk

|Am,n|
, (6)

where y(t) = [y1(t), · · · , yM (t)] is the full measurement vector be-
fore discarding invalid data, ym(t) is the output of the m-th sensor,

and |A| denotes the cardinality of A. For complete arrays, we can
obtain uk for k = −M0 +1,−M0 +2, . . . ,M0−1, and the ad-hoc
estimate ofRU is given by

R̂
(ad−hoc)
U =


u0 u−1 · · · u−M0+1

u1 u0 · · · u−M0+2

...
...

. . .
...

uM0 uM0−1 · · · u0

 . (7)

We can then apply MUSIC or other DOA estimation methods to
R̂

(ad−hoc)
U to obtain the DOA estimates.

For incomplete arrays, we can use a similar construction to ob-
tain a M̃0×M̃0 matrix from uk, k = −M̃0+1, M̃0+2, . . . , M̃0−1,
which is the estimate of a submatrix ofRU.

It should be noted that while (6) and (7) are computationally
efficient to evaluate, the resulting R̂(ad−hoc)

U is not guaranteed to be
positive definite, which may be undesired in some applications.

3.2. Maximum-Likelihood Based Estimators

Based on the results in [24], the negative log-likelihood function of
our model is given by

L(R1, . . . ,RL) =

L∑
l=1

Nl[log |Rl|+ tr(R−1
l R̂l)], (8)

where we have omitted the constants.
Observe thatRU is Hermitian Toeplitz. It is possible to reparam-

eterize RU by exploiting the Toeplitz structure, and the estimation
of RU becomes a structure covariance estimation problem. In the
following discussion, we consider only complete arrays. Extension
to non-restricted arrays will be discussed in the remarks.

Following the idea in [25], we construct the structured matrices
as follows. Let I(i)M denotes the M ×M matrix whose elements are
zero except for the i-th upper diagonal (i.e., I(i)M (m,n) = δ(n −
m − i), where δ(n) is the Kronecker delta). For a given positive
integer M , we define the matrices {Q(i)

M }
2M−1
i=1 as

Q
(i)
M =


IM , i = 1,

I
(i−1)
M + (I

(i−1)
M )T , 2 ≤ i ≤M,

−jI(i−M)
M + j(I

(i−M)
M )T , M + 1 ≤ i ≤ 2M − 1.

(9)
Then we are able to expressRU as

RU =

2M0−1∑
i=1

ciQ
(i)
M0
, (10)

where c = [c1, c2, · · · , c2M0−1]T ∈ R2M0−1 is the Hermitian
Toeplitz parameterization of RU. After obtaining its estimate, we
can reconstruct RU from (10) and then perform DOA estimation.
Substituting (10) into (8) and taking the derivative with respect to ci,
we obtain

∂L(c)

∂ci
=

L∑
l=1

Nl tr
[
TlSQ

(i)
M0
STT T

l R
−1
l (Rl − R̂l)R

−1
l

]
for i = 1, 2, . . . , 2M0 − 1. Because vec(AXB) = (BT ⊗
A) vec(X), and because (A ⊗B)−1 = A−1 ⊗B−1 for nonsin-
gularA,B [20], we have

vec(TlSQ
(i)
M0
STT T

l ) = Φlq
(i)
M0
, (11)
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where q(i)M0
= vec(Q

(i)
M0

), and Φl = TlS ⊗ TlS. We also have

vec(R−1
l (Rl − R̂l)R

−1
l ) = W−1

l (ΦlQM0c− r̂l), (12)

where Wl = RT
l ⊗Rl, QM0 = [q

(1)
M0
, q

(2)
M0
, · · · , q(2M0−1)

M0
], and

r̂l = vec(R̂l). Let all the partial derivatives with respect to ci be
zero. Then, we utilize (11) and (12) to obtain

( L∑
l=1

NlGl

)
c =

L∑
l=1

Nlhl (13)

where Gl = QT
M0

ΦT
l W

−1
l ΦlQM0 , and hl = QT

M0
ΦT

l W
−1
l r̂l.

Note that if we have sufficient snapshots in each period, R̂l will be
very close to Rl, and we can replace Wl with its estimate Ŵl =
R̂T

l ⊗ R̂l. In this case the only unknown in (13) will be c, whose
estimate can be readily given by

ĉWLS =
[ L∑

l=1

NlĜl

]−1[ L∑
l=1

Nlĥl

]
. (14)

where Ĝl denotes Gl with Wl replaced by Ŵl, and ĥl denotes hl

with Wl replaced by Ŵl. Lemma 2 ensures that (14) produces real
results.

Lemma 1. LetA,B,C be Hermitian symmetric. Then tr(ABAC)
is real.

Proof. This can be shown by the fact that

tr(ABAC)∗ = tr[(ABAC)H ] = tr(CABA) = tr(ABAC).

Lemma 2. Both Ĝl and ĥl are real.

Proof. Through algebraic manipulations, the (m,n)-th element of
Ĝl can be rewritten as

tr[R̂−1
l TlSQ

(m)
M0
STT T

l R̂
−1
l TlSQ

(n)
M0
STT T

l ].

By the definition of Q(m)
M0

in (9), we know that TlSQ
(m)
M0
STT T

l is
Hermitian symmetric. Because R̂−1 is also Hermitian symmetric,
we know that each element of Ĝl is real by Lemma 2. The proof for
the second claim follows the same idea.

We call (14) the “weighted least squares” (WLS) estimate, be-
cause (14) is the solution to the weighted least squares problem:
minc

∑L
l=1Nl‖ΦlQM0c− r̂l‖2Ŵ−1

l

, where ‖x‖W =
√
xHWx.

We can also observe that (13) leads to the following fixed-point
type iteration:

ĉ
(k)
FP =

[ L∑
l=1

NlGl

(
ĉ
(k−1)
FP

)]−1[ L∑
l=1

Nlhl

(
ĉ
(k−1)
FP

)]
, (15)

whereGl

(
ĉ
(k−1)
FP

)
and hl

(
ĉ
(k−1)
FP

)
are constructed from ĉ(k−1)

FP .

Remark 1. In practice, the computation of Ĝl and ĥl can be effi-
ciently implemented by exploiting the properties of Kronecker prod-
uct and the fact that Φl are Kronecker products of simple selection
matrices. In our experiments, by setting the initial value as ĉWLS,
{ĉ(k)FP} showed good convergence in a few iterations.

Remark 2. When the signal-to-noise ratio (SNR) is very high, the
conditional number of RU will be large, and the reconstructed R̂U

becomes indefinite. In this case, we project R̂U onto the intersection
of the positive semidefinite cone PSD and the Toeplitz subspace T.
This can be achieved via the alternating projections method. Because
both PSD and T are convex and their PSD ∩ T 6= ∅, the alternating
projections method converges [26].

Remark 3. For incomplete arrays, not all elements inRU are present
inRl. ThereforeQT

M0
Φl is no longer full rank, and we cannot per-

form the matrix inversion in (14) or (15). In this case, we first delete
the elements we cannot estimate from c and their corresponding ba-
sis matrices from {Qi

M0
}2M0−1
i=1 to form c̃ and Q̃M0 . We then esti-

mate c̃ using (14) or (15), with QM0 replaced by Q̃M0 . Finally, we
construct a submatrix ofRU from the estimated c̃.

4. PERFORMANCE BOUNDS

Because the measurements are assumed independent, the (m,n)-th
element of the Fisher information matrix (FIM) for our signal model
is given by [24, 27]:

FIMmn =

L∑
L=1

Nl tr

[
∂Rl

∂ηm
R−1

l

∂Rl

∂ηn
R−1

l

]
.

Using the properties of the Kronecker product, we can express the
FIM as

FIMmn =

L∑
L=1

Nl

[
∂rU
∂ηm

]H
ΦH

l (RT
l ⊗Rl)

−1Φl
∂rU
∂ηn

,

where rU = vec(RU). Therefore, for complete arrays, the FIM for
the Toeplitz parametrization is given by

FIMc =

L∑
l=1

NlQ
H
M0

ΦH
l (RT

l ⊗Rl)
−1ΦlQM0 . (16)

For incomplete arrays, as stated in Remark 3, not all elements in c is
estimable. To compute the FIM of the estimable elements in c, we
need to replaceQM0 by Q̃M0 in a similar fashion.

For parameters η = [θ,p, σ2
n]T , the FIM is given by

FIMη =

L∑
l=1

NlD
HΦH

l (RT
l ⊗Rl)

−1ΦlD, (17)

where D = [ȦdP Ad i], and Ȧd = Ȧ∗U � AU + A∗U � ȦU,
ȦU = [∂aU(θ1)/∂θ1, · · · , ∂aU(θK)/∂θK ], Ad = A∗U � AU,
and i = vec(IM0). The corresponding CRBs can be obtained by
inverting the FIMs in (16) and (17).

5. NUMERICAL EXAMPLES

We consider the following two sparse linear array configurations in
the numerical examples:

• Nested array: [0, 1, 2, 3, 7, 11, 15, 19]d0;

• Coprime array: [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d0.
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Fig. 1. Performance of different algorithms for the nested array con-
figuration.
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Fig. 2. Performance of different algorithms for the co-prime array
configuration.

In all the experiments, we consider 12 sources uniformly dis-
tributed between −π/3 and −π/3. The number of sources is more
than the number of sensors of either array. We set L to be 3. When
L = 2 the last sensor of each array fails, and when L = 3, the last
two sensors of each array fail. We set N1 = 50µ, N2 = 100µ, and
N3 = 150µ, where µ is a tunable parameter. Hence we have more
snapshots with missing data than those with complete data. When
making comparisons under different numbers of snapshots, we fixed
SNR = 0dB and varied µ from 1 to 20. When making comparisons
under different SNRs, we fixed µ = 1 and varied SNR from -20dB
to 20dB. The root-mean-square errors (RMSEs) were obtained from
500 trials, and the DOAs were estimated by MUSIC.

In all the figures, “First” denotes the results obtained using only
R̂1, while Ad-hoc, TML-WLS, and TML-FP denote the results ob-
tained from (7), (14), and (15), respectively. We also include the
CRB obtained from (17) for comparison.

Fig. 1 illustrates the performance of different algorithms for the
nested array configuration. We observe that TML-FP achieves the
best performance, and is very close to the CRB, while “First” results
in the worst performance because it cannot utilize the information in
R̂l (l ≥ 2). We observe similar results for the co-prime configura-
tion in Fig. 2. However, a gap exists between the RMSE of TML-FP
and the CRB, which may be attributed to the fact that the co-prime
array is incomplete.

6. CONCLUSION AND FUTURE WORK

In this paper, we discussed the problem of direction finding using
sparse linear arrays with incomplete measurements. By exploiting
the coarray structure, we proposed to reconstruct a covariance ma-
trix with enhanced degrees of freedom using the Toeplitz parameter-
ization. Specifically, by applying our method to co-prime and nested
arrays, we can resolve more sources than the number of sensors in
the missing data case. We used numerical examples to show that our
method has better accuracy than the traditional method using only
the complete measurements. Potential future work includes perfor-
mance and identifiability analysis in the presence of missing data.
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