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ABSTRACT
This paper considers the problem of co-array interpolation
for direction-of-arrival (DOA) estimation with sparse non-
uniform arrays. By utilizing the much longer difference co-
array associated with these arrays, it is possible to perform
DOA estimation of more sources than sensors. Since the co-
array may contain holes (or missing lags), interpolation algo-
rithms have been proposed to fully utilize the remaining ele-
ments of the co-array beyond that captured in the contiguous
ULA segment. However, the quality and stability of interpo-
lation performed by such algorithms (especially in presence
of modeling errors) have not been analyzed. This paper pro-
vides a unified analysis of co-array interpolation algorithms
to bound the interpolation error in terms of modeling errors.
The results are universal in the sense that they can be applied
to analyze any algorithm that utilizes the positive semidef-
inite (PSD) structure of the interpolated covariance matrix.
The general framework is then applied to analyze specific al-
gorithms and simulations are conducted to study their inter-
polation errors. 1

Index Terms— Co-array, array interpolation, Toeplitz
completion, nuclear norm minimization, DOA estimation.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of energy-emitting
sources is a central problem arising in diverse applications
such as radar, sonar, medical imaging and communications
[1, 2]. Sparse non-uniform arrays such as nested, coprime
and minimum redundancy arrays are known to offer distinct
advantages over traditionally used Uniform Linear Arrays
(ULA) owing to their ability to resolve more sources than
sensors [3, 4, 5]. The basic idea is to create a longer vir-
tual difference co-array [4] by judicious array design, whose
degrees-of-freedom (DOF) can be exploited by well-designed
algorithms such as Co-array MUSIC [6, 7].

For many non uniform arrays (such as coprime arrays),
the difference co-array is not continuous and has holes or
missing lags. Since co-array MUSIC algorithms are capa-
ble of only exploiting the DOF of a continuous ULA segment
of the co-array, several array interpolation techniques such
as positive definite Toeplitz completion [8], co-array interpo-
lation/extrapolation [9, 10], and nuclear norm minimization
[11] have been proposed to interpolate the correlation values
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at the missing lags and use the interpolated co-array for DOA
estimation.

In this paper, we propose a unified framework for ana-
lyzing co-array interpolation algorithms by developing an ex-
plicit upper bound on the interpolation error, in terms of the
measurement error. Our analysis framework is very generic
and can be applied to any algorithm that utilizes the posi-
tive semidefinite (PSD) structure of the interpolated covari-
ance matrix. As special cases, we use this general framework
to develop algorithm-specific error bounds for the algorithms
in [8, 11]. Our results establish stability of these interpola-
tion algorithms with respect to modeling errors (such as that
due to finite snapshot averaging) and demonstrate that perfect
interpolation is possible as the error decays to zero.
Related Work. While the performance of traditional array
interpolation techniques have been analyzed in the past in
terms of bias and mean squared error [12, 13], these meth-
ods are primarily based on interpolating the physical array
using linear transforms, and cannot be used for co-array in-
terpolation since the co-array is a non-linear function (Kro-
necked product) of the physical array. On the other hand,
interpolation algorithms that directly work in the co-array do-
main [8, 11], have not been analyzed. In this paper, we bridge
this gap by providing a unified analysis of co-array interpola-
tion algorithms. Our analysis is based on recently developed
tools from super resolution theory and positive semidefiniete
Toeplitz covariance compression [14, 15, 16, 17, 18].

2. CO-ARRAY BASED SIGNAL MODEL AND NEED
FOR INTERPOLATION

ConsiderD narrowband statistically uncorrelated sources im-
pinging on a linear sensor array from directions θ̄i, 1 ď i ď
D. The array contains K sensors with the kth sensor located
at zkd, where zk is an integer and d “ λ{2 (λ being the carrier
wavelength of the narrowband sources). The signals received
at the K sensors are given by

x “
D
ÿ

i“1

ciaSpθiq ` nS (1)

where ci denotes the amplitude of each source (assumed to be
zero-mean random variables) and aSpθiq P CK represents the
steering vector corresponding to the normalized DOA θi P
T “ r´1{2, 1{2s, which is given by θi “ pd{λq sin θ̄i (θ̄i
being the DOA satisfying θ̄i P r´π{2, π{2s). The steering
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vector satisfies raSpθiqsk “ rej2πzkθis. Here, nS represents
zero-mean additive noise at K sensors, statistically uncorre-
lated with the source amplitudes ci. The statistical assump-
tions on source signal and noise are summarized as [2, 11]

Erc˚i cjs “ σ2
i δi,j ,Erc˚i nSs “ 0,ErnSn

H
S s “ σ2I

Under the above assumptions, the correlation matrix RS P
CKˆK of the received signals is given by

RS “
D
ÿ

i“1

σ2
i aSpθiqa

H
S pθiq ` σ

2I (2)

Denoting S “ tzk, 1 ď k ď Ku as the set of sensor posi-
tions (normalized with respect to d), its difference co-array is
defined as [3]

D fi tzk ´ zj |zk, zj P Su

Let us associate a vector aD with this difference set, such that
raDpθiqsm “ re

j2πnmθis, nm P D. The vectorized version of
(2), after removal of repeated rows, is given by

rD “
D
ÿ

i“1

σ2
i aDpθiq ` σ

2e0 (3)

where e0 has zero entries everywhere except at the location
corresponding to the lag 0 [11, 7]. Due to similarities between
(3) and (1), we can treat (3) as the signal received at a virtual
sensor array with sensors positions given by D.

Depending on the geometry of S, the difference co-array
D may be continuous (i.e. it can itself be a uniform linear
array or a ULA, consisting of only consecutive integers), or
it may contain holes. The former is known as a fully aug-
mentable array and the latter is called a partially augmentable
array [8]. Following [11], we associate the following two uni-
form linear arrays U and V with D as follows:

Definition 1. [11] Let U be the maximum ULA contained
in D such that U “ tm|t´|m|, ¨ ¨ ¨ ,´1, 0, 1, ¨ ¨ ¨ , |m|u Ď
Du and V be the smallest ULA containing D such that V “

tm|minpDq ď m ď maxpDqu.

As an example, let S “ t0, 1, 2, 6u, then D “ t´6,´5,
´4,´2,´1, 0, 1, 2, 4, 5, 6u, U “ t´2,´1, 0, 1, 2u and V “

t´6,´5,´4,´3,´2,´1, 0, 1, 2, 3, 4, 5, 6u. For fully aug-
mentable arrays, we have U “ D “ V. Examples include
ULA, nested array [3] and minimum redundancy array [5].
On the other hand, for partially augmentable arrays, we have
U Ă D Ă V. Coprime array [4] is an example of partially
augmentable array.

2.1. Co-Array MUSIC for Partially Augmentable Arrays

Co-array based DOA estimation algorithms (such as co-array
MUSIC [6]) can utilize the degrees of freedom (given by the
cardinality) in the virtual ULA segment U contained in D,
and for well-designed arrays, it is possible to resolve more
sources than sensors. For nested and coprime arrays with
K sensors, |U| “ OpK2q and hence it is possible to resolve
OpK2q sources using only K sensors.

For partially augmentable arrays, the virtual ULA V is
strictly larger than U. However, co-array MUSIC [6] cannot
directly utilize the DOF in V since certain entries of V do
not appear in D. To address this issue, a preprocessing step
based on interpolation has been suggested [8, 11]. Similar to
rD, let rU be the sub-vector of rD, containing the correlation
values evaluated at lags given by U, and rV be a vector that
consists of correlation values at lags given by the set V. Co-
array MUSIC can be applied on rV to fully exploit the DOF
of partially augmentable arrays (provided rV can be estimated
using rD).

2.2. Interpolation Algorithms

Let r̃D and r̃U be the corresponding estimates of rD and rU
computed using finite number of snapshots. In particular, r̃U
is a subvector of r̃D and

r̃D “ rD `wD (4)

where wD captures the finite-snapshot estimation error. We
now briefly describe two algorithms, one based on maximum
entropy method [8], and the other based on nuclear norm min-
imization [11] that aim to estimate rV from r̃D. For conve-
nience, we denote U`,V`,D` as the non-negative subsets of
U,V,D respectively, and let T pvq be the Hermitian symmet-
ric Toeplitz matrix with v as the first column.
(a) Maximum Entropy Method:
In [8], the authors used maximum entropy (ME) as a criterion
for extrapolation of correlation at lags in V outside the range
of D. The algorithm consists of two steps. Firstly, given r̃U` ,
it aims to find the closest positive semidefinite (PSD) Toeplitz
matrix T prME

U` q fitting the data as follows:

rME
U` “ arg min

xU`

}xU` ´ r̃U`}2 pME-1q

s.t. T pxU`q ľ 0 (5)

In the next step, the vector of autocorrelation values rME
V` (ex-

trapolated at lags in V`), is computed as

rME
V` “ arg max

xV`

detpT pxV`qq pME-2q

s.t. rT pxV`qsn,1 “ rr
ME
U` sn, n P U`

}rT pxV`qsD`zU`,1 ´ r̃D`zU`}2 ď ε1,

T pxV`q ľ 0 (6)

Here ε1 is a parameter that can be tuned to ensure non-empty
feasible set. In particular it can be made equal to }wD`zU`}2.
Co-array MUSIC can be finally applied on T prME

V` q to per-
form DOA estimation using the DOF of V. Notice that the
ME method utilizes PSD constraint in both steps so that the
Toeplitz matrix constructed using the extrapolated values con-
tinues to be PSD.
(b) Nuclear Norm Minimization:
In [11], the authors assumed that the desired covariance ma-
trix T prV`q exhibits low rank and proposed to minimize its
nuclear norm (as a surrogate for rank) to perform interpola-
tion. In its original form, the algorithm does not impose any
PSD constraint on the solution. Since our analysis framework
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will explicitly use PSD constraint, we consider the following
modified problem instead which uses PSD constraint:

rNUCV` “ arg min
x̂V
}T px̂V`q}˚ pNUC-PSDq

s.t. }rT px̂V`qsU`,1 ´ r̃U`}2 ď ε

}rT px̂V`qsD`zU`,1 ´ r̃D`zU`}2 ď ε̃

T px̂V`q ľ 0

where ε, ε̃ are parameters (dependent on estimation error) to
ensure that (NUC-PSD) feasible (i.e. so that the true solution
is contained in the feasible set).

3. A UNIFIED ANALYSIS OF EXTRAPOLATION
ERROR

For notational simplicity, let rn denote the nth entry of rV` .
Then, using the representation (3), the desired value of rn is
given by

rn “
D
ÿ

i“1

σ2
i e
j2πnθi ` σ2δpnq n P V`

Let r#V` denote any estimate of rV` such that

T pr#V`q ľ 0 (7)

Notice that this automatically implies T pr#U`q ľ 0. We now
present a fundamental result, upper bounding the extrapola-
tion error |r#n ´ rn| (for any missing or unobserved lag n
outside the range of D) in terms of the estimation error in the
correlation values for the lags in D. The proof follows from
a closely related lemma in [15, 14]. The stability analysis re-
quires a separation condition on the true directions and we
define ρp¨, ¨q as the distance function in wraparound manner
over T [17].

Theorem 1. Let r#V` denote any estimate of rV` such that (7)
holds. If the true DOAs tθluDl“1 in (2) satisfy

min
p‰q

ρpθp, θqq ą 4{|U`| (8)

and |U`| ą 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4
such that for |U`| ď n ă |V`|

|rn ´ r
#
n | (9)

ď

ˆ

c̄1 `
c̄2πn

|U`|
`
c̄3π

2n2

|U`|2

˙ˆ

c̄4Dξ

|U`|
` rx#

U`s0 ´ rxU`s0

˙

ď

ˆ

c̄1 `
c̄2πn

|U`|
`
c̄3π

2n2

|U`|2

˙ˆ

c̄4Dξ

|U`|
` }x#

U` ´ xU`}2

˙

where ξ fi supθPT |xaU`pθq,x#
U` ´ xU`y|

Remark 1. Notice that the above bound on extrapolation er-
ror holds irrespective of any specific algorithm used as long
as the algorithm enforces the PSD constraint (7).

Remark 2. Theorem 1 indicates that the upper bound on ex-
trapolation error bound (on missing lags) is controlled by es-
timation error of the correlation supported on the observed
set U`. Depending on the algorithm used, the extrapolation
error can be magnified by a factor of Opn2{|U`|2q (with re-
spect to the estimation error on the observed entries in U). A
similar quadratic scaling between high frequency reconstruc-
tion error and low frequency observation error has also been
reported in [16, 19, 17] for super-resolution imaging using
TV-norm based reconstruction.

3.1. Analysis of Specific Extrapolation Algorithms

We now apply the result from Theorem 1 to perform a unified
analysis of the extrapolation algorithms presented earlier.

3.1.1. Analysis of Maximum Entropy Method

In this case, r#V` “ rME
V` and (ME-2) ensures that T prME

V q ľ

0. Hence Theorem 1 applies, and we have following result:

Theorem 2. If the true DOAs tθluDl“1 satisfy

min
p‰q

ρpθp, θqq ą 4{|U`|

and |U`| ą 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4
such that for |U`| ď n ă |V`| and n R D`, the solution
rME
V` to (ME-2) satisfies

|rn ´ r
ME
n | (10)

ď

ˆ

c̄1 `
c̄2πn

|U`|
`
c̄3π

2n2

|U`|2

˙

˜

c̄4D
a

|U`|
` 1

¸

}r#U` ´ rU`}2

ď 2

ˆ

c̄1 `
c̄2πn

|U`|
`
c̄3π

2n2

|U`|2

˙

˜

c̄4D
a

|U`|
` 1

¸

}wU`}2

where wU` denotes the finite-snapshot estimation error (sup-
ported on U`) as given in (4).

Proof. By triangle inequality, we have

ξ ď }aU`pθq}2}r
#
U` ´ rU`}2 “

a

|U`|}r#U` ´ rU`}2 (11)

From (ME-1), we have

}r#U` ´ rU`}2 ď }r
#
U` ´ r̃U`}2 ` }r̃U` ´ rU`}2

ď 2}r̃U` ´ rU`}2 “ 2}wU`}2 (12)

Since T prME
V` q ľ 0 and the separation condition is satisfied,

we know from Theorem 1 that (9) holds. The proof then fol-
lows by substituting (11) and (12) in (9).

3.1.2. Nuclear Norm Minimization

In this case, r#V` “ rNUCV` and the PSD constraint ensures
that T prNUCV` q ľ 0. Then Theorem 1 applies, leading to the
following results
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Theorem 3. If the true DOAs tθluDl“1 satisfy

min
p‰q

ρpθp, θqq ą 4{|U`|

and |U`| ą 256, then there exist positive constants c̄1, c̄2, c̄3, c̄4
such that for |U`| ď n ă |V`| and n R D`,

|rn ´ r
NUC
n | (13)

ď

ˆ

c̄1 `
c̄2πn

|U`|
`
c̄3π

2n2

|U`|2

˙

c̄4D
a

|U`|
pε` }wU`}2q

Proof. For any feasible PSD Toeplitz matrix, we have

}T pxV`q}˚ “ N rxV`s0

where rxV`s0 denotes the entry corresponding to the zero lag.
Therefore, the minimizing solution rNUCV` of (NUC-PSD) sat-
isfies rrNUCV` s0 ď rrV`s0. Also, notice that

}rNUCU` ´ rU`}2 ď }r
NUC
U` ´ r̃U`}2 ` }r̃U` ´ rU`}2

ď ε` }wU`}2

The proof completes by applying the triangle inequality (11)
on ξ and using these results in (9).

Letting ε “ }wU`}2 ensures a non-empty feasible set
in (NUC-PSD) and the bound in (13) becomes proportional
to }wU`}2. Hence, using the universal result presented in
Theorem 1, we have derived upper bounds on the extrapo-
lation error corresponding to (ME-2) and (NUC-PSD), ex-
plicitly in terms of the finite snapshot error wU` . These re-
sults indicate that the extrapolation error for these algorithms
goes to zero asymptotically in the number of snapshots (since
}wU`}2 tends to zero with increasing snapshots), indicating
stability of extrapolation. To the best of our knowledge, The-
orems 2,3 present the first results on stability of both algo-
rithms in terms of extrapolation error.

4. NUMERICAL RESULTS

We follow the same experimental setting as in [11] which uses
a coprime array with sensors located at S “ r0, 3, 5, 6, 9, 10,
12, 15, 20, 25s. In this case, |D| “ 43, |U| “ 35 and |V| “
51. For a given number (D) of sources, we generate the true
DOAs as θi “ ´0.4`0.8pn´1q{pD´1q for 1 ď n ď D [11].
We choose both signal and noise powers to be 1 (i.e. SNR of
0 dB). We estimate the correlation matrix at the output of the
coprime array by averaging over L snapshots as

R̃S “
1

L

L
ÿ

i“1

xix
H
i

Hence, the error wD in (4) is due to finite snapshot averaging.
We study the interpolation error of (ME-2) and (NUC-PSD)
as a function of L. Let r#V` be the estimate of rV` obtained
from either algorithm. The normalized interpolation error is
defined as

NMSEint “
1

}rV`zD`}22
E
´

}r#V`zD` ´ rV`zD`}22

¯

(14)

In Fig. 1, we plot the NMSEint (averaged over 100 Monte
Carlo runs) as a function of L for both algorithms correspond-
ing to different number of sources. The interpolation error de-
creases monotonically with increasing L, indicating stability
of reconstruction. It can also been that (NUC-PSD) performs
better than (ME-2), especially for larger L.
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Fig. 1. NMSEint (averaged over 100 runs) as a function of
L for (NUC-PSD) and (ME) algorithms.

In Fig. 2, we compare the MUSIC spectra obtained by ap-
plying co-array MUSIC algorithm on T pr̃U`q (i.e. the corre-
lation matrix corresponding to only the contiguous ULA seg-
ment U`) and on T prNUCV` q (correlation matrix interpolated
using (NUC-PSD)). It can be seen that the quality of DOA
estimation can be improved by using the full interpolated co-
array V` instead of using only the contiguous ULA segment
U`.

−0.5 0 0.5
10

−5

10
0

10
5

10
10

S
p
e
c
tr

u
m

 P
(θ

) 
(U

)

θ
−0.5 0 0.5

10
−2

10
0

10
2

10
4

10
6

10
8

S
p
e
c
tr

u
m

 P
(θ

) 
(N

U
C

−
P

S
D

)

θ

Fig. 2. MUSIC Spectrum obtained by using co-array MUSIC
algorithm on (Left) T pr̃U`q, and (Right) T prNUCV` q, interpo-
lated using (NUC-PSD) algorithm. Here, D = 16, L = 50.

5. CONCLUSION

In this paper, we analyzed the problem of co-array extrapo-
lation that allows us to estimate correlation values at missing
lags (or holes) in the co-array of partially augmentable arrays.
We provided a universal upper bound on the extrapolation er-
ror for these missing correlation values, in terms of the esti-
mation error corresponding to the contiguous ULA segment
of the co-array. This bound is universal in the sense that it is
obeyed by any extrapolation algorithm that exploits the PSD
constraint on the autocorrelation matrix. Using this unified
framework, we analyzed the performance of two extrapola-
tion algorithms and established the stability of extrapolation
(with respect to finite-snapshot error). Their performance is
further illustrated through numerical experiments.
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