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ABSTRACT

This paper provides a second-order (SO) analytical performance

analysis of the 1-D Standard ESPRIT algorithm. Existing perfor-

mance analysis frameworks are based on first-order (FO) approx-

imations of the parameter estimation error, which are asymptotic

in the effective signal-to-noise ratio (SNR), i.e., they become exact

for either high SNRs or a large sample size. However, these FO

expressions do not capture the algorithmic behavior in the threshold

region at low SNRs or for a small sample size. Yet, such conditions

are often encountered in practice. Therefore, we present a closed-

form expression for the parameter estimation error of 1-D Standard

ESPRIT up to the SO that is valid in a wider effective SNR range.

Moreover, we derive an analytical mean square error (MSE) expres-

sion, where we assume a zero-mean circularly symmetric complex

Gaussian noise distribution. Finally, we use the existing FO MSE

expression and the derived SO MSE expression to analytically com-

pute the SNR breakdown threshold of the MSE threshold region.

Empirical simulations verify the analytical expressions.

Index Terms— ESPRIT, performance analysis, second-order,

DOA estimation.

1. INTRODUCTION

Direction of arrival (DOA) estimation of impinging signals is a

task required in many array processing applications including radar,

sonar, mobile communications, etc. Due to their simplicity and high-

resolution capabilities, ESPRIT-type algorithms [1, 2] are among the

most popular subspace-based parameter estimation schemes.

The analytical performance of ESPRIT-type algorithms, which

is of interest for performance prediction and objective comparison

purposes, has been thoroughly studied in the literature [3, 4, 5, 6].

The two most established frameworks for the perturbation due to

measurement noise have been reported in [3] and [4]. Both concepts

rely on first-order (FO) approximations of the perturbed data. While

[3] employs a statistical approach based on the eigenvector distribu-

tion that is only asymptotic in the sample size, [4] presents a deter-

ministic approach by analytically modeling the subspace perturba-

tion. The latter is more general as it is asymptotic in the effective

signal-to-noise ratio (SNR), i.e, the analytical expressions become

exact for either high SNRs or a large sample size. Multi-dimensional

extensions of [4] and the incorporation of additional signal struc-

ture, i.e., strict non-circularity, have been considered in [5] and [6],

respectively.
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2239/6-1) and the Carl-Zeiss Foundation under the scholarship project EM-
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The drawback of the existing FO perturbation frameworks is that

the perturbation model of the noise is only a FO approximation. As

a result, the analytical expressions are only valid in the high effective

SNR region and therefore, do not capture the behavior of the algo-

rithms in the threshold region at low SNRs or for a small sample size.

Yet, these are the conditions that are most often encountered in prac-

tice. This aspect motivates the development of performance analysis

frameworks that also take into account the second-order (SO) per-

turbation of the noise such that the analytical results are valid in a

wider effective SNR range. An extension of the FO results on the

subspace estimation error in [4] to the SO case has been derived in

[7, 8]. The analytical SO performance of MUSIC in the presence

of array modeling errors has been provided in [9] and an SO bias

analysis of Standard ESPRIT has been presented in [7]. To the best

of our knowledge, the SO performance analysis with respect to the

mean square error (MSE) of ESPRIT-type algorithms is still open.

Another important performance-related research aspect is the

characterization of the threshold region. The threshold region refers

to a rapid deterioration of the MSE of parameter estimators, i.e.,

a performance breakdown, when the SNR falls below a threshold

SNR. The threshold region and its breakdown SNR has been investi-

gated for the maximum likelihood (ML) estimator in [10, 11]. How-

ever, the threshold SNR of ESPRIT-type algorithms has so far not

been studied in the literature.

In this paper, we present a SO performance analysis of 1-D Stan-

dard ESPRIT using the simple least squares (LS) solution of the

shift-invariance equations. We derive a closed-form SO approxima-

tion for the estimation error in terms of the explicit noise realization

based on the results in [7, 8]. Moreover, we find an analytical MSE

expression under the simplifying assumption of a zero-mean circu-

larly symmetric complex Gaussian noise distribution. It is apparent

that the derived expressions agree with those in [5], if only the FO

terms are maintained. Finally, we use the existing FO MSE expres-

sion from [5] and the derived SO MSE expression in this work to an-

alytically compute the threshold SNR for the threshold region. Nu-

merical simulation results verify the derived analytical expressions.

2. DATA MODEL

Let d planar wavefronts from narrowband far-field sources impinge

on a shift-invariant array composed of M identical sensor elements.

The collection of N data snapshots can be modeled by the measure-

ment matrix

X = AS +N = X0 +N ∈ C
M×N , (1)

where the array steering matrix A = [a(µ1), . . . ,a(µd)] ∈ C
M×d

contains the array steering vectors a(µi) that correspond to the i-th

3051978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



spatial frequency µi, i = 1, . . . , d. Moreover, S ∈ C
d×N is the

symbol matrix and N ∈ C
M×N represents the additive zero-mean

circularly symmetric white Gaussian sensor noise with variance σ2
n.

Due to the shift invariance structure of the array, we can apply

ESPRIT-type algorithms to estimate the desired spatial frequencies.

Specifically, we have J1AΦ = J2A, where J1, J2 ∈ R
M(sel)

×M

are the selection matrices that select M (sel) out of M sensors for

each of the two subarrays and Φ = diag{ejµi}di=1 ∈ C
d×d contains

the spatial frequencies of interest.

Since A is unknown, the signal subspace Ûs ∈ C
M×d is es-

timated by computing the d dominant left singular vectors of X .

Then, a non-singular matrix T ∈ C
d×d can be found such that

A ≈ ÛsT . Using this relation, the shift invariance equation can

be expressed in terms of the estimated signal subspace, yielding

J1ÛsΨ ≈ J2Ûs (2)

with Ψ ≈ TΦT−1. Often, the unknown matrix Ψ is estimated

using least squares (LS), i.e., Ψ̂ = (J1Ûs)
+J2Ûs ∈ C

d×d, where

(·)+ stands for the Moore-Penrose pseudo inverse. Finally, the

spatial frequency estimates are obtained by µ̂i = arg{λ̂i}, i =

1, . . . , d, where λ̂i are the eigenvalues of Ψ̂.

3. SECOND-ORDER PERFORMANCE ANALYSIS OF

STANDARD ESPRIT

The presented SO performance analysis is based on the assumption

that the noise-free signal is superimposed by a small additive noise

contribution. Then, the derivation of the SO expansion of Standard

ESPRIT follows similar steps as for the FO expansion from [4, 5]

but additionally takes into account the SO terms that are neglected

by the FO analysis. The steps for Standard ESPRIT include the SO

perturbation of the signal subspace ∆Us in terms of the noise N ,

which was already derived in [8], the SO perturbation of the LS so-

lution ∆Ψ with respect to ∆Us, the SO eigenvalue perturbation ∆λi

in terms of ∆Ψ, and the SO perturbation of the spatial frequencies

∆µi as a function of ∆λi. Note that similar expressions have also

been found for the bias analysis in [7]. Here, however, we derive the

analytical MSE expression and the threshold SNR.

3.1. Perturbation of the Signal Subspace

We first consider the signal subspace estimation error due to the

small additive perturbation N . To this end, we extract the noise-

free subspaces from X0 as

X0 =
[

Us Un

]

[

Σs 0

0 0

]

[

Vs Vn

]H
, (3)

where Us ∈ C
M×d, Un ∈ C

M×(M−d), as well as Vs ∈ C
N×d

span the signal subspace, the noise subspace, and the row space re-

spectively, and Σs ∈ R
d×d contains the non-zero singular values

on its diagonal. Modeling the estimated signal subspace as Ûs =
Us + ∆Us, where ∆Us denotes the subspace estimation error, we

obtain the SO approximation [7, 8]

∆Us = ∆U
(1)
s +∆U

(2)
s +O{δ3}, (4)

where ∆U
(1)
s is the FO perturbation in terms of N , given as [4]

∆U
(1)
s = UnU

H
n NVsΣ

−1
s , (5)

and ∆U
(2)
s denotes the SO perturbation in terms of N , given by [8]

∆U
(2)
s = −UnU

H
n NX

+
0 NVsΣ

−1
s

+UnU
H
n NVnV

H
n N

H
UsΣ

−2
s . (6)

Further, we have δ = ‖N‖, and ‖ · ‖ represents a submultiplicative

norm. In what follows, we define (·)(1) and (·)(2) as the FO and SO

approximations, respectively.

3.2. Perturbation of the Shift Invariance Solution

For the shift invariance solution, we write Ψ̂ = Ψ+∆Ψ such that

the shift invariance equation in (2) can be written as J1 (Us +∆Us)
(Ψ+∆Ψ) ≈ J2 (Us +∆Us). Then, the perturbation of the LS

solution up to the SO is given by

∆Ψ ≈
(

J1 (Us +∆Us)
)+

(J2∆Us − J1∆UsΨ) . (7)

Next, we use the FO Taylor approximation of (Y +∆Y )+ for a tall

matrix Y ∈ C
m×n, i.e., m > n, given by

(Y +∆Y )+ ≈ Y
+ − Y

+∆Y Y
+ +

(

Y
H
Y
)

−1

∆Y
H
PY ⊥ ,

where PY ⊥ = Im − Y Y +. Using this property and inserting (4)

into (7), we can express the SO truncated version of (7) as

∆Ψ = ∆Ψ
(1) +∆Ψ

(2) +O{δ3}, (8)

where

∆Ψ
(1) = (J1Us)

+
(

J2∆U
(1)
s − J1∆U

(1)
s Ψ

)

, (9)

∆Ψ
(2) = (J1Us)

+
(

J2∆U
(2)
s − J1∆U

(2)
s Ψ

)

+

(

− (J1Us)
+
(

J1∆U
(1)
s

)

(J1Us)
+

+
(

(J1Us)
H (J1Us)

)

−1 (

J1∆U
(1)
s

)H

P(J1Us)
⊥

)

(

J2∆U
(1)
s − J1∆U

(1)
s Ψ

)

. (10)

3.3. Perturbation of the Eigenvalue Decomposition

Let the perturbed version of the noise-free eigendecomposition Ψ =
QΛQ−1 be given by

Ψ̂ = Ψ+∆Ψ = (Q+∆Q) (Λ+∆Λ) (Q+∆Q)−1 . (11)

Approximating the term (Q+∆Q)−1
by its FO Taylor expan-

sion (Q+∆Q)−1 ≈ Q−1 − Q−1∆QQ−1, defining P = Q−1,

and solving (11) for ∆Ψ, its individual eigenvalue perturbation

∆λi, i = 1, . . . , d, up to the SO can be expressed as

∆λi = p
T
i ∆Ψqi + λi(p

T
i ∆qi)

2 +O{δ3}, (12)

where pT
i and qi denote the i-th row of P and the i-th column

of Q, respectively. With the help of the eigenvector equation
(

(Ψ+∆Ψ) − (λi + ∆λi)Id
)

(qi +∆qi) = 0 solved for ∆qi,

it can be shown that the second term of (12) evaluates to zero.

Therefore, the SO expansion of ∆λi is given by

∆λi = ∆λ
(1)
i +∆λ

(2)
i +O{δ3} (13)

with ∆λ
(1)
i = pT

i ∆Ψ
(1)qi and ∆λ

(2)
i = pT

i ∆Ψ
(2)qi.
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3.4. Perturbation of the Spatial Frequency Estimates

The relation between the perturbed eigenvalues and the spatial fre-

quency estimates is given by λi + ∆λi = ej(µi+∆µi). Taking the

logarithms of both sides and applying the SO Taylor approximation

to the left hand side, we get

ln (λi) +
∆λi

λi

−
(∆λi)

2

2λ2
i

≈ j(µi +∆µi). (14)

Then, equating the imaginary parts of both sides, the SO expansion

of ∆µi is obtained as

∆µi = ∆µ
(1)
i +∆µ

(2)
i +O{δ3} (15)

with

∆µ
(1)
i = Im

{

∆λ
(1)
i /λi

}

, (16)

∆µ
(2)
i = Im

{

∆λ
(2)
i /λi

}

−
1

2
Im

{

(

∆λ
(1)
i

)2

/λ2
i

}

. (17)

Inserting the FO expressions from (5), (9), and (13) into (16), we im-

mediately obtain the result for the FO spatial frequency error ∆µ
(1)
i

derived in [5], which is given by

∆µ
(1)
i = Im

{

r
T
i Wn

}

, (18)

where n = vec{N} ∈ C
MN×1 and

ri = qi ⊗
(

[

(J1Us)
+ (J2/λi − J1)

]T
pi

)

, (19)

W =
(

Σ
−1
s V

T
s

)

⊗
(

UnU
H
n

)

. (20)

Upon inserting the expressions for (4), (8), and (13) into (17), the

SO term of the spatial frequency error ∆µ
(2)
i can be compactly ex-

pressed as

∆µ
(2)
i = Im

{

n
H
Ain+ n

T
Bin

}

, (21)

where the matrices Ai and Bi are defined as

Ai =
(

VnV
H
n

)T

⊗
(

UsΣ
−2
s qip

T
i (J1Us)

+(J2/λi − J1)UnU
H
n

)

+

(

p
T
i

(

(J1Us)
H (J1Us)

)

−1

Σ
−1
s V

H
s

)T
(

VsΣ
−1
s qi

)T

⊗
(

UnU
H
n J

T
1 P(J1Us)

⊥ (J2/λi − J1)UnU
H
n

)

, (22)

Bi = −K
T
M,N

(

(

X
+
0

)T
⊗

(

VsΣ
−1
s qi

)

(23)

⊗
(

p
T
i (J1Us)

+ (J2/λi − J1)UnU
H
n

))

−K
T
M,N

(

(

VsΣ
−1
s (J1Us)

+ (J2/λi − J1)UnU
H
n

)T

⊗
(

VsΣ
−1
s qip

T
i (J1Us)

+
J1UnU

H
n

))

−
1

2

(

r
T
i W

)T(

r
T
i W

)

with KM,N ∈ R
MN×MN being the commutation matrix that sat-

isfies KM,N · vec{A} = vec{AT} for arbitrary matrices A ∈
C

M×N [12]. Note that for the derivation of (21), we have used the

following properties for matrices of appropriate sizes:

Tr
{

AXBX
H
C

H
}

= vec {X}H
(

B
T ⊗

(

C
H
A
))

vec {X} ,

Tr {AXBXC} = vec {X}T K
T
M,N

(

B
T ⊗ (CA)

)

vec {X} ,

Tr
{

A
H
X

H
BXC

}

= vec {X}H
((

A
∗

C
T
)

⊗B
)

vec {X} .

These identities can be easily proven by applying the common trace

and the vectorization properties along with the commutation matrix

rule.

3.5. MSE Expression of Standard ESPRIT

For the derivation of the analytical MSE expression for Standard ES-

PRIT, we assume for simplicity that the noise is zero-mean circularly

symmetric complex Gaussian, i.e., the covariance matrix Rnn =
E{nnH} and the pseudo-covariance matrix Cnn = E{nnT} of

n ∈ C
MN×1 simplify to Rnn = σ2

nIMN and Cnn = 0MN .

Then, the MSE for the i-th spatial frequency is given by

E
{

(∆µi)
2} ≈ E

{

(

∆µ
(1)
i

)2
}

+ 2 · E
{

∆µ
(1)
i ∆µ

(2)
i

}

+ E

{

(

∆µ
(2)
i

)2
}

+O{δ6}, (24)

where the first term of (24) is already known from the analytical FO

MSE expression in [5] and given as

E

{

(

∆µ
(1)
i

)2
}

=
σ2
n

2

∥

∥

∥
W

T
ri

∥

∥

∥

2

2
. (25)

The second term of (24) can be written as

2 · E
{

∆µ
(1)
i ∆µ

(2)
i

}

= 2 · E
{

Im
{

r
T
i Wn

}

Im
{

n
H
Ain

}}

+ 2 · E
{

Im
{

r
T
i Wn

}

Im
{

n
T
Bin

}}

(26)

and evaluates to zero. This results from the zero-mean and the cir-

cularity of the noise. The third term of (24) can be expressed as

E

{

(

∆µ
(2)
i

)2
}

= E

{

(

Im
{

n
H
Ain

}

+ Im
{

n
T
Bin

})2
}

= E

{

Im
{

n
H
Ain

}2
}

+ 2·E
{

Im
{

n
H
Ain

}

Im
{

n
T
Bin

}}

+ E

{

Im
{

n
T
Bin

}2
}

. (27)

Note that the middle term of (27) is again equal to zero due to the

assumptions on the noise. The first term can be simplified to

E

{

Im
{

n
H
Ain

}2
}

=
1

4
E

{

(

−jnH
Ain+ jnT

A
∗

in
∗

)2
}

=
1

2

(

Re {E2} − Re {E1}
)

(28)

with E1= E
{

nHAinn
HAin

}

and E2= E
{

nHAinn
TA∗

in
∗
}

.

Then, it can be shown after straightforward calculations based on

[13] that

E1 = σ4
n

(

Tr {Ai}
2 +Tr

{

A
2
i

})

, (29)

E2 = σ4
n

(

|Tr {Ai} |
2 +Tr

{

A
H
i Ai

})

. (30)

Analogously, the third term of (27) is given by

E

{

Im
{

n
T
Bin

}2
}

=
1

4
E

{

(

−jnT
Bin+ jnH

B
∗

i n
∗

)2
}

=
1

2

(

Re {F2} − Re {F1}
)

(31)
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with F1 = E
{

nTBinn
TBin

}

and F2 = E
{

nTBinn
HB∗

i n
∗
}

.

Again, F1 evaluates to zero due to the circularity of the noise, while

F2 can be shown to be equal to

F2 = σ4
n Tr

{

B
H
i

(

Bi +B
T
i

)}

. (32)

Consequently, the MSE of the SO terms in (27) becomes

E

{

(

∆µ
(2)
i

)2
}

=
σ4
n

2

(

|Tr {Ai} |
2 +Tr

{

A
H
i Ai

}

−Re
{

Tr {Ai}
2+Tr

{

A
2
i

}}

+Tr
{

B
H
i

(

Bi +B
T
i

)})

. (33)

Eventually, we insert (25) and (33) into (24) and obtain the final

expression for (24) of the i-th spatial frequency as

E
{

(∆µi)
2} ≈

σ2
n

2

∥

∥

∥
W

T
ri

∥

∥

∥

2

2
+

σ4
n

2

(

|Tr {Ai}|
2 +Tr

{

A
H
i Ai

}

+Tr
{

B
H
i

(

Bi+B
T
i

)}

− Re
{

Tr {Ai}
2 +Tr

{

A
2
i

}}

)

, (34)

where ri and W are given in (19) and (20), and Ai and Bi are

defined in (22) and (23), respectively.

3.6. Threshold SNR for the Threshold Region

Besides performance prediction and comparison purposes, the de-

rived FO and SO analytical MSE expressions can also be used to

compute the SNR threshold that characterizes the MSE threshold re-

gion. To this end, we set both MSE expressions equal to each other

and compute the 3-dB cutoff SNR threshold, which corresponds to

the SNR where the MSE exceeds its FO prediction by 3 dB. Specif-

ically, we first compute the cutoff noise power as

σ2
3dB = E

{

(

∆µ
(1)
i

)2
}

= E

{

(

∆µ
(2)
i

)2
}

(35)

=
∥

∥

∥
W

T
ri

∥

∥

∥

2

2

/(

|Tr {Ai}|
2 +Tr

{

A
H
i Ai

}

+Tr
{

B
H
i

(

Bi+B
T
i

)}

− Re
{

Tr {Ai}
2 +Tr

{

A
2
i

}}

)

,

which is then used to compute the SNR threshold according to

SNR3dB = 10 lg
(

Ps/σ
2
3dB

)

, where Ps is the signal power.

4. SIMULATION RESULTS

In this section, we provide numerical results to evaluate the behav-

ior of the presented analytical SO performance framework of 1-D

Standard ESPRIT (SE). In particular, we compare the derived ana-

lytical MSE expression in (34) “SE ana (1+2)” to the empirical “SE

emp” estimation errors of the algorithm obtained by averaging over

Monte Carlo trials. Additionally, we also include the analytical FO

MSE expression in (25) “SE ana (1)” known from [5] and the SO

only MSE expression “SE ana (2)” in (33). The overall performance

is benchmarked by the deterministic CRB (Det CRB) [14]. For the

simulations, we adopt a uniform linear array (ULA) composed of

M = 10 isotropic sensors with half-wavelength spacing. The d
impinging signals carry QPSK-modulated symbols with unit power.

Moreover, we assume the noise to be circularly symmetric white

Gaussian. The curves are obtained by averaging over 5000 trials.

Fig. 1 shows the total RMSE over all sources as a function of

the SNR. We assume d = 2 signals at the positions µ1 = 0.7 and

µ2 = 0.8 with a real-valued pair-wise correlation of ρ = 0.8. The

number of snapshots is N = 20. It is apparent from Fig. 1 that

the analytical curve “SE ana (1+2)” coincides with “SE ana (1)” and

−20 −10 0 10 20 30 40

10
−2

10
−1

10
0

10
1

SNR (dB)

R
M

S
E

 (
ra

d
)

 

 

SE emp

SE ana (1)
SE ana (2)
SE ana (1+2)

Det CRB

Fig. 1. RMSE versus SNR for M = 10, N = 20, d = 2 correlated

sources (ρ = 0.8) at µ1 = 0.7 and µ2 = 0.8.

5 10 20 50
10

−2

10
−1

10
0

Snapshots N

R
M

S
E

 (
ra

d
)

 

 

SE emp

SE ana (1)
SE ana (1+2)

Det CRB

Fig. 2. RMSE versus snapshots N for M = 10, SNR = 20 dB,

d = 3 uncorrelated sources at µ1 = 0, µ2 = 0.25, and µ3 = 0.5.

both agree well with “SE emp” in the high SNR regime. At lower

SNRs, “SE ana (1+2)” accurately models the behavior of “SE emp”

at the start of the threshold region. The 3-dB SNR threshold, i.e.,

the intersection of “SE ana (1)” and “SE ana (2)” can be computed

analytically using (35).

In Fig. 2, we illustrate the RMSE versus the number of snapshots

N . We assume d = 3 uncorrelated signals at µ1 = 0, µ2 = 0.25,

and µ3 = 0.5. The SNR is fixed at 20 dB. Again, we observe hat

the analytical curves and the empirical curves match well for a large

sample size N and “SE ana (1+2)” accurately models the algorithmic

behavior of “SE emp” for a small sample size.

5. CONCLUSION

In this paper, we have presented an SO analytical performance analy-

sis of 1-D Standard ESPRIT. We have derived a closed-form expres-

sion for the parameter estimation error up to the SO and found an

analytical MSE expression under the assumption of a zero-mean cir-

cularly symmetric complex Gaussian noise distribution. The advan-

tage of these new SO expressions over the existing FO expressions is

that they are not only valid in the high effective SNR region but also

in a wider effective SNR range. Moreover, we have used the existing

FO MSE expression and the derived SO MSE expression to analyti-

cally compute the SNR threshold of the MSE threshold region. The

analytical expressions have been verified by empirical simulations.
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