
REAL-TIME AND PARALLEL SHVC HYBRID CODEC AVC TO HEVC DECODER

Pierre-Loup Cabarat Wassim Hamidouche Olivier Déforges

IETR / INSA Rennes (France)
pcabarat, whamidouche & odeforges@insa-rennes.fr

ABSTRACT

Scalable High efficiency Video Coding (SHVC) is the scalable ex-
tension of the latest video coding standard High Efficiency Video
Coding (HEVC). One of the key novelties introduced by SHVC is
that it enables hybrid codec scalability. This basically means that the
video layers can be encoded with different video standards providing
backward compatibility between codecs.
In this paper, we propose a software parallel SHVC decoder in hy-
brid codec scalability configuration. The proposed design consists of
an Advanced Video Coding (AVC) decoder for the Base Layer (BL)
and a HEVC decoder for the Enhanced Layer (EL). In order to per-
form Inter Layer Prediction (ILP), a communication of decoding
states and outputs is established between the two decoders. While
the native frame based parallelism is still allowed within the two
decoders, the proposed design also enables the use of frame based
parallelism between the two decoders. The proposed software de-
sign enables a real time decoding of the HEVC EL at 2160p60 while
the AVC base layer is decoded at 1080p60 for x2 spatial scalability.
Index Terms— Real-time, SHVC, hybrid codec, HEVC, AVC

1. INTRODUCTION

Three years after its creation in 2010, the Joint Collaborative Team
on Video Coding (JCT-VC) released HEVC [1] standard also known
as ITU-T H.265 [2] in January 2013. HEVC is intended to take over
the dominating position of H.263/MPEG-2 [3] and AVC [4, 5] for
Digital Video Broadcasting (DVB) systems. However, as pointed
out in [6], switching between technologies in broadcast involves lots
of resources and efforts. Content providers have to think about a
way to provide users with both legacy and upcoming video formats.
An easy way to solve this issue appears to be simulcast: a broadcast
configuration where the content is simultaneously broadcasted mul-
tiple times according to the different target formats. However, this
solution of addressing the issue is not the most bandwidth efficient
since the encoder does not take advantage of obvious redundancies
between the multiple instances of a same content broadcasted into
multiple formats (codecs). A more efficient way of dealing with this
issue consists in using a multi-layers scheme, relying on scalable
video coding. Multiple ELs can be used to complement a BL, each
one carrying supplementary information required by the format it
targets.

In this paper, we focus on SHVC hybrid codec scalability feature
in the scheme of a transition from AVC to HEVC technologies. As
shown in Figure 1 the two video formats can be either embedded
and broadcasted in a same stream using MPEG-Transport Stream
(MPEG-TS) [7] or dynamically streamed over the internet accord-
ing to the available bandwidth using Dynamic Adaptive Streaming

This work was supported by the 4EVER2 project (www.4ever-2.com)

4K UHD

AVC support
HEVC support

AVC BL

HEVC EL

MPEG-TS
Broadcast

SHVC
Encoder

4K UHD

Node 1

Node 2

 SHVC MP4

HD

HD

HD

MPEG-DASH

Node 3

Fig. 1. Illustration of AVC/HEVC hybrid codec broadcast using
SHVC

over HTTP (DASH) [8]. At the receiver’s side, the HEVC EL decod-
ing stage can then be skipped if not supported or for energy sparing
purposes. At the same time, more advanced devices can benefit from
enhanced quality brought by the EL supplementary data.
This paper provides a description of a real-time parallel hybrid codec
decoder based on SHVC. To the best of our knowledge, the proposed
decoder is the first realisation of a real-time AVC and HEVC hybrid
codec decoder. The proposed decoder consists of a software solu-
tion based on the SHVC decoder implemented in the open source
project OpenHEVC [9]. FFmpeg h264 [10] decoder is included into
OpenHEVC decoder as a BL decoder. The proposed decoder bene-
fits from the use of the multi-layers SHVC decoder design described
in [11] and [12]. The decoder is optimized for different platforms
and is friendly parallel to leverage multi-core processors. Thus, the
decoder’s design enables a real-time decoding of the multi-layer con-
tent in Ultra High Definition (UHD) at 60 frames per second.
The rest of this paper is organized as follow. Section 2 introduces
the state of the art of the existing HEVC and SHVC decoders. In
Section 3, we present the proposed parallel hybrid decoder design.
Section 4 provides performance results of the hybrid codec decoder.
Finally, Section 5 concludes this paper.

2. RELATED WORK

Finalized in July 2014, SHVC [6] is the multi-layer extension known
as Annex H of the HEVC standard [1]. The SHVC extension is based
on the HEVC coding and enhances the coding gain by leveraging
spatial correlation between layers. As displayed in Figure 2, the
SHVC decoder consists of multiple instances of the HEVC decoder

3046978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

Intra Picture
Prediction

Inter Picture
Prediction

In-Loop
Filter

IDCT Q−1

b

b

b

Entropy
decoder

DPB

Prediction

Bitstream
Input

MV upscaling

HEVC EL decoder

BL decoder

Intra Picture
Prediction

Inter Picture
Prediction

In-Loop
Filter

IDCT Q−1

b

b

b

Entropy
decoderDPB

Prediction

Up-scaling

4K
Output

HD
Output

Fig. 2. Illustration of SHVC decoding process

as EL decoder, while the BL decoder can be either HEVC or raw
video. The only additional operation relative to SHVC lies into the
up-scaling process required by Inter Layer Prediction (ILP) in the
case of spatial scalability. The up-scaling is performed directly on
the raw output pictures of the direct lower layer decoder, but also
on Motion Vector (MV)s when the BL corresponds to HEVC con-
tent. The up-scaled pictures and MVs can then be used as reference
for Inter Picture Prediction (IPP). Therefore, the only few changes
brought to HEVC standard concern High Level of Syntax (HLS)
elements. The lower level of information relative to SHVC decod-
ing can be found into to the slice headers. The decoding of Coding
Tree Unit (CTU) data is still fully equivalent to the process in use
for HEVC content, reducing the effort of supporting the SHVC ex-
tension from an existing HEVC implementation. In this context, the
switch of technologies between HEVC and SHVC can be provided
in a near-time, without intrusive modifications to be brought to ex-
isting decoder devices.
While shortening the gap between technologies, SHVC standard
also introduces bit depth, color gamut and hybrid codec scalability
types, which are not supported by its predecessor the Scalable Video
Coding (SVC) standard [13]. The hybrid codec scalability feature
proposed by SHVC proves its interest especially when consider-
ing backward compatibility issues of transiting between two codec
technologies. It consists in the possibility of using different coding
standards for the BL and the EL. Since the BL can be considered as
raw video content, the BL can come with any coding process as soon
as the correct decoder to process the BL data is available. Thus, con-
sidering the minor changes to be brought to HEVC decoders, SHVC
can provide a near-time and bandwidth efficient solution to the tran-
sit between AVC and HEVC technologies.
There exist several open source software HEVC decoders such
as [14–17] and [9]. Among these decoders, two support the SHVC
extension namely the Scalable HEVC reference software Model
(SHM) [18] and the OpenHEVC decoder [9]. However, the refer-
ence software decoder is not designed for real time decoding and
the OpenHEVC does not support hybrid codec scalability configu-
ration of SHVC. Fortunately, since SHVC decoding only requires
HLS changes, those software and even existing hardware HEVC de-
coders such as the chip proposed in [19], or the Field Programmable
Gate Array (FPGA) proposed in [20, 21], can easily be extended to
support SHVC processing. As an exemple, authors in [22] already

proposed a real-time SHVC encoder enabling real time encoding of
4Kp30 video in spatial scalability with a ratio of 2.

3. HYBRID CODEC DECODER DESIGN

HEVC EL

AVC BL

B

B

B B

B

B

I

PP

P

Decoded CTU

Current CTU

Decoded MB
Current MB

Inter Layer Dependency

Intra Layer Dependency

Fig. 3. Illustration of ILP frame based parallelism in the AVC/SHVC
hybrid decoder in the use case of spatial scalability with a ratio of 2

The proposed hybrid codec software decoder includes the opti-
mized AVC decoder implemented in FFmpeg library [10] within the
OpenHEVC [9] decoder as an optional BL decoder. The decoder is
based on the design of the decoder described in [11] and [12], except
that the AVC does not support Wavefront Paralell Processing (WPP).
We consider only one thread per frame for both BL and EL frames.
Thus, it results in a simplified version of the same algorithm. Both
AVC BL and HEVC EL decoders have been adapted to interact and
support ILP frame based parallelism.
An insight of ILP frame-based parallelism in our SHVC decoder is
illustrated in Figure 3. ILP parallelism follows the same principle
than the Intra-layer frame-based parallelism, with an additional ref-
erence picture corresponding to the decoded frame of the BL. Each
layer decoder is divided into multiple frame decoders, each one liv-
ing into its own thread. Once a thread finishes decoding a block,
it signals its position to the dependent frame threads. In Figure 3,
the blue blocks correspond to already decoded HEVC CTUs by the
EL decoder, green blocks correspond to the already decoded AVC
Macro Block (MB)s, and clearer blocks represent the position of the
block currently being decoded in each frame decoder’s thread, i.e.
the position of its frame’s thread.
When decoding its EL current block, the frame decoder thread takes
into account the progress of its inter layer reference decoding thread
as well as its inner layer references decoding threads. Based on the
position of its reference frame threads and the current MV, the frame
decoder can determine whether the data required by Motion Com-
pensated Prediction (MCP) is already available or not. Hence, the
frame decoder thread will either wait for the reference’s progress or
continue the decoding of the current frame.
In order to ensure the data required by ILP is always available when
decoding an EL frame, we also have to ensure that the BL decoder
will not free its reference before all dependent frames are completely
decoded. This is done by adding a reference to the BL frame that

3047

will be freed when the corresponding EL frame is fully decoded.
Besides, when a frame thread has finished decoding and is avail-
able to start decoding a new frame, the thread waits until a frame
thread for each of the other layers are also available. These design
choices enable to ensure the ELframe thread decoder will not start
before its BL reference frame has begun being decoded, as well as
memory usage stability. Indeed, since the BL decoder does not have
any dependencies with its upper layers, it would continue decoding
the following BL frames. If we suppose a BL and EL of different
decoding complexities (which is almost always true, especially con-
sidering spatial scalability) the memory space used to store the BL
frames required for the EL following frames’ dependencies would
keep growing as long as the EL decoder doesn’t catch up with the
BL decoder (which seems rather unlikely). Thus, by making the
BL frame decoder thread stop and wait for the EL frame decoder
thread to finish, we are assured we avoid an unexpected memory
usage growth.

4. HYBRID CODEC DECODER PERFORMANCE

This section describes the performance of the hybrid codec decoder
presented in previous section. We consider the Common Test Con-
ditions (CTC) and reference software coding configurations [23].
The sequences described by CTC are divided into two classes. Class
B consists of five 1920x1080 sequences with various frame rates
and a duration of 10 seconds. Class A consists of two 2560x1600
sequences at 30 fps with a duration of 5 seconds. In order to give
an insight of the expected performance for 2160p video contents, we
added four 3840x2160 sequences with frame rates of 60 fps and a
duration of 10 seconds into a new class noted Class U.
The Quantization Parameter (QP) values used for encoding are those
described in CTC. For spatial scalability, we use BL QP values of 22,
26, 30, 34 with a delta of 0 and 2 for the EL. For SNR scalability,
we use BL QP values of 26, 30, 34, 38 with deltas of -6 and -4 for
the EL.
The AVC bitstreams were coded with JM-19.0 [24] reference soft-
ware and the HEVC bitstreams corresponding to EL as well as their
simulcast single layer equivalent were coded using SHM-9.0 refer-
ence software [18]. We only consider random access configuration
and the minor changes we brought to CTC configuration files are
stated hereafter. In order to obtain a ratio of 2 for spatial scalability,
we consider 960x540 as a BL resolution for Class B sequences in-
stead of 960x544. As the embedded AVC decoder does not support
this configuration, we set the BIdenticalList parameter to 0.
All our results were carried-out on a 6 cores Intel Xeon W3670 pro-
cessor running at 3.2 GHz, on Ubuntu 12.04 LTS operating system.
The kernel version was 3.16.0-73 and the software was built with
gcc version 4.8.4. All speed related results corresponds to an aver-
age obtained on ten decoding runs with a sleep of ten seconds after
each complete decoding. It should be noted that we did not compare
to [11, 12] mostly becauseWPP is not present in the AVC standard.

4.1. Bandwidth efficiency

Table 1 illustrates the spared bandwidth using different SHVC scal-
ability types in comparison to the equivalent single layer. By single
layer we mean the HEVC stream which would have been obtained in
simulcast configuration using the same QP value and resolution that
were used to encode the EL. Although those results do not relate
to the decoder design, they are given as an additional information
intended to demonstrate the interest of SHVC format AVC/HEVC
hybrid codec for broadcast in the configuration we used. Given each

Sequences
x2 x1.5 SNR

∆QP ∆QP ∆QP
0 2 0 2 -6 -4

C
la

ss
B

Kimono -20.4 -35.2 -35.9 -61.0 -18.7 -30.7
ParkScene -15.4 -24.1 -30.7 -51.3 -18.9 -30.7

Cactus -13.1 -21.8 -26.6 -47.6 -14.9 -25.4
BasketBallDrive -12.1 -22.5 -26.7 -48.8 -14.8 -26.0

BQTerrace -5.9 -9.8 -13.2 -26.4 -7.8 -17.8
Average -13.4 -22.7 -26.6 -47.0 -15.0 -26.1

C
la

ss
A Traffic -14.8 -23.4 - - -15.6 -27.0

PeopleOnStreet -21.2 -36.5 - - -19.5 -34.9
Average -18.0 -30.0 - - -17.6 -31.0

C
la

ss
U

Beauty -11.4 -20.7 - - -13.0 -19.5
Bosphorus -18.5 -32.3 - - -15.0 -27.0
HoneyBee -22.5 -42.9 - - -15.6 -33.9

PeopleOnStreet -21.0 -35.4 - - -19.7 -34.8
Average -18.4 -32.8 - - -15.8 -28.8

Table 1. BD-Rate (in %) HEVC high resolution single layer vs
HEVC EL based on AVC BL in all tested scalability configurations

tested scalability configuration, the HEVC EL resulting from SHVC
coding using an AVC BL is compared against the HEVC stream
obtained in single layer configuration. The results are given using
the Bjontegaard Delta rate (BD-rate) [25] difference where negative
value refers to gain of the SHVC. The BD-rate performance shows
that SHVC configuration enables significant coding gains compared
to the single layer configuration. Based on our results, the broad-
caster could spare from 13.4% up to 47.0% of the used bandwidth.

4.2. Single thread performance

Class Sequences
Frame Rate (FPS)

Simulcast Multilayer
x2 x1.5 SNR

Class B

Kimono 69 56 31 39
ParkScene 63 54 30 37

Cactus 75 64 28 43
BasketBallDrive 62 52 23 35

BQTerrace 65 58 42 36
Average 67 57 31 38

Class A Traffic 23 19 - 14
PeopleOnStreet 38 32 - 22

Average 31 26 - 18

Class U

Beauty 19 17 - 11
HoneyBee 26 24 - 15
Bosphorus 20 17 - 12

PeopleOnStreet 12 10 - 7
Average 19 17 - 11

Table 2. Comparison of single layer per sequence single thread av-
erage frame rates (in fps) against different scalability types

Table 2 gives an insight of the decoding frame rate performance
of both multi-layers and single layer schemes. It compares, in single
thread configuration, the average decoding frame rates on all tested
QP values for each sequence of a single layer against different multi-
layer configurations. The frame rates differ within the different
classes and multi-layers configurations due to the decoding of BLs
of different complexity as well as the up-scaling operation which
is not required by SNR scalability. However, the ratio performed

3048

between the single layer frame rate and the multi-layers frame rates
does not vary much within each scalability configuration. The speed
loss involved by the decoding of the BL in each scalability type can
be approximated to this ratio. The spatial scalability with a ratio of
2 introduces around 12% decoding speed loss compared to single
layer decoding, while a ratio of 1.5 causes about 27% speed loss for
Class B, and SNR scalability causes about 40% speed loss.
Table 3 displays the single thread frame rates decoder performance

QPEL x2 x1.5 SNR Simulcast
20 - - 21 fps 31 fps
22 34 fps 15 fps 27 fps 40 fps
24 41 fps 18 fps 32 fps 50 fps
26 46 fps 20 fps 35 fps 58 fps
28 52 fps 23 fps 38 fps 65 fps
30 55 fps 24 fps 41 fps 71 fps
32 60 fps 26 fps 44 fps 76 fps
34 62 fps 27 fps 46 fps 81 fps
36 66 fps 28 fps - 85 fps

Table 3. Single thread frame rates (in fps) per EL QP values obtained
on BasketBallDrive

obtained from BasketBallDrive video sequence for different QP val-
ues and different scalability configurations. It illustrates the increase
in decoding speed when raising the QP value. This is most likely
thanks to a lower number of residual transform coefficients when
raising the QP. For QP values from 22 to 34, speed increases of
nearly a half whatever it is single layer or multi-layers configuration.
It is important to note that when the frame rates are presented as
average frame rates, the minimum and maximum values can differ
greatly given QP configurations. Another noticeable fact is the SNR
scalability outperforms spatial scalability with a ratio of 1.5. Indeed,
even if the BL is the largest among multi layer configuration, it does
not require any up-scaling operation, which decreases the decoding
complexity.

4.3. Multiple threads performance

Table 4 gives the performance of the proposed design in terms of
frame rates speed up and latency. It provides average frame rates,
decoding frame times, and speed-up per class and per number of
threads for the different scalability types. The number of threads is
denoted n, nBL and nEL denotes the number of threads given to
the BL and the EL respectively. Note that on the six cores proces-
sor used in our experiment, results for thread numbers greater than 6
configuration relates to hyper-threading.
The results show that the decoder achieves an overall good per-
formance in terms of frame rates, speed-up and latency. The pro-
posed decoder is able to achieve real-time decoding in all configu-
rations. While SNR scalability for Class U sequences seems to be
the most critical, the decoder still nearly achieves 50 fps when using
12 threads, and performs up to 79 and even 155 fps on Class A and
Class B sequences. This is due to the fact that although it does not
require up-sampling, the BL size is the largest among all scalability
types so it requires more decoding operations. In spatial scalabil-
ity configuration when using a ratio of 2, decoding performance are
above 60 fps for the three sequences’ classes in test. Class B se-
quences goes up to 194 fps and Class A nearly achieve 100 fps. The
speed up stays relatively close within each scalability types regard-

Threading configuration n(nBL,nEL)
1(1) 4(2,2) 6(3,3) 8(4,4) 10(5,5) 12(6,6)

C
la

ss
A x2

DFR 26 51 72 82 95 97
S-U 1 2.02 2.86 3.30 3.85 3.92
DFT 36.23 86.87 137.07 189.14 234.56 275.45

SN
R DFR 18 40 58 65 76 79

S-U 1 2.22 3.22 3.67 4.30 4.45
DFT 19.08 54.26 78.86 113.90 133.23 156.64

C
la

ss
B

x2

DFR 57 110 148 179 187 194
S-U 1 1.94 2.60 3.12 3.29 3.41
DFT 16.14 39.24 60.75 82.93 103.80 121.11

x1
.5

DFR 31 63 89 104 112 116
S-U 1 2.03 2.88 3.37 3.65 3.78
DFT 16.24 41.58 67.60 91.74 113.16 130.54

SN
R DFR 38 82 120 137 149 155

S-U 1 2.16 3.11 3.58 3.90 4.07
DFT 9.11 25.92 37.55 49.15 58.12 64.70

C
la

ss
U x2

DFR 17 34 48 55 63 64
S-U 1 2.01 2.85 3.26 3.83 3.89
DFT 61.86 145.22 229.26 318.39 400.96 474.09

SN
R DFR 11 26 36 41 46 48

S-U 1 2.23 3.14 3.59 4.13 4.24
DFT 29.41 86.57 132.13 187.24 223.65 266.12

Table 4. Average Decoding Frame Rate (DFR) (in fps), Speed-Up
(S-U) and Decoding Frame Time (DFT) (in ms) per class, scalability
configurations and number of threads

ing the class of the sequence. The best speed-up and latency results
are observed in SNR configuration. Since the BL and EL share the
same pixel resolution, it is reasonable to think that the BL and EL de-
coding complexity are close. Thus the ILP frame based parallelism
is the closest to inner layer frame based parallelism. This way, giv-
ing the BL and EL the same number of threads seems a rather good
strategy. For spatial scalability types, the speed-up results are lower
than in SNR scalability. This is also found in decoding frame times
which overtake greatly those of SNR type. This relates to up-scaling
operations which adds complexity to the threading communication
process when computing the equivalent upscaled position of it’s ref-
erences. Moreover, when a BL frame thread has completed the de-
coding its frame and is available to decode a new frame, it has to
wait an EL frame thread to be available before beginning decoding
the next frame. Since in spatial scalability the BL is more likely less
complex to decode than the EL, it does not benefit fully from the
speed-up brought by its inner layer frame base parallelism. Then the
speed up could be enhanced by using WPP configuration and en-
abling the EL to own more threads than the BL, aiming to bring the
EL decoding frame times closer to those of the BL.

5. CONCLUSION

In this paper, we proposed a parallel hybrid codec SHVC decoder
using an AVC decoder as a BL decoder and a HEVC decoder as a EL
one. The decoder has been tested in various scalability and threading
configurations. Our results show that the proposed decoder achieves
real-time decoding up to 2160p60 on random access profile. Hence,
it demonstrates that the additional complexity involved in the use
of AVC to HEVC SHVC hybrid codec instead of single layer HEVC
for real-time decoding, can already be overcome by existing devices.
Finally, based on our results, SHVC becomes a serious candidate
to the upcoming transition from AVC to HEVC into broadcasting
technologies. Especially when considering the bandwidth it spares
against simulcast.

3049

6. REFERENCES

[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,
“Overview of the high efficiency video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology
(TCSVT), vol. 22, pp. 1648–1667, December 2012.

[2] ISO/IEC 23008-2 HEVC (ITU-T Rec. H.265), “High Effi-
ciency Video Coding,” January 2013.

[3] ITU-T Rec. H.263, “Video Coding for Low Bit Rate Commu-
nication,” Tech. Rep., ITU-T, February 1995.

[4] ISO/IEC 14496-10 AVC (ITU-T Rec. H264), “Advanced video
coding for generic audiovisual services,” Tech. Rep., ITU-T,
November 2007.

[5] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560–576, July 2003.

[6] Jill M. Boyce, Yan Ye, Jianle Chen, and Adarsh K. Ramasub-
ramonian, “Overview of SHVC: Scalable Extensions of the
High Efficiency Video Coding Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 26, no. 1,
pp. 20–34, Jan. 2016.

[7] ISO/IEC 13818-1 (ITU-T Rec. H262), “Generic coding of
moving pictures and associated audio information,” Tech.
Rep., ITU-T, 1995.

[8] Stockhammer, T., “Dynamic Adaptive Streaming over HTTP
Standards and Design Principles,” ACM Conference on Multi-
media Systems, 2011.

[9] “Open Source HEVC decoder openHEVC,”
https://github.com/OpenHEVC/openHEVC.

[10] “Open Source multimedia framework FFmpeg,”
https://ffmpeg.org/.

[11] W. Hamidouche, M. Raulet, and O. Deforges, “4K Real-Time
and Parallel Software Video Decoder for Multilayer HEVC
Extensions,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 26, no. 1, pp. 169–180, Jan 2016.

[12] W. Hamidouche, M. Raulet, and O. Deforges, “Parallel shvc
decoder: Implementation and analysis,” in 2014 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), July 2014,
pp. 1–6.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scal-
able Video Coding Extension of the H.264/AVC Standard,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 17, no. 9, pp. 1103–1120, Sept. 2007.

[14] K. McCann, B. Bross, W.-J. Jan, I.-K. Kim, K. Sugimoto, and
G.-J. Sullivan, “High Efficiency Video Coding (HEVC) Test
Model 9 (HM 9) Encoder Description,” Oct. 2012.

[15] Benjamin Bross, Mauricio Alvarez-Mesa, Valeri George,
Chi Ching Chi, Tobias Mayer, Ben Juurlink, and Thomas
Schierl, “Hevc real-time decoding,” 2013, vol. 8856, pp.
88561R–88561R–11.

[16] “cclxv,” https://bitbucket.org/prunedtree/cclxv.

[17] “libde265,” https://github.com/strukturag/libde265.

[18] “SHVC Reference software model (SHM),”
https://hevc.hhi.fraunhofer.de/svn/svn SHVCSoftware/.

[19] M. Tikekar, C. T. Huang, C. Juvekar, V. Sze, and A. P. Chan-
drakasan, “A 249-Mpixel/s HEVC Video-Decoder Chip for 4K
Ultra-HD Applications,” IEEE Journal of Solid-State Circuits,
vol. 49, no. 1, pp. 61–72, Jan 2014.

[20] D. Engelhardt, J. Moller, J. Hahlbeck, and B. Stabernack,
“FPGA implementation of a full HD real-time HEVC main
profile decoder,” IEEE Transactions on Consumer Electron-
ics, vol. 60, no. 3, pp. 476–484, Aug 2014.

[21] M. Abeydeera, M. Karunaratne, G. Karunaratne, K. De Silva,
and A. Pasqual, “4K Real-Time HEVC Decoder on an FPGA,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 26, no. 1, pp. 236–249, Jan 2016.

[22] Ronan Parois, W. Hamidouche, M. Raulet, and O. Deforges,
“Efficient Parallel Architecture of an intra only Scalable multi-
layer HEVC encoder,” in IEEE Conference on Design and
Architectures for Signal and Image Processing 2016, October
2016.

[23] Vadim Seregin and Yong He, “Common Conditions and Soft-
ware Reference Configurations,” Document JCTVC-Q1009,
JCT-VC of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, Valencia, ES, March 2014.

[24] “Joint Reference test Model (JM),”
http://iphome.hhi.de/suehring/tml/.

[25] Gisle Bjontegaard, “Calculation of average PSNR differences
between RD-curves,” Doc. VCEG-M33 ITU-T Q6/16, Austin,
TX, USA, 2-4 April 2001, 2001.

3050

