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ABSTRACT�
 
This paper describes a video fingerprinting system that is highly 
robust to audio and video transformations. The proposed system 
adapts a robust audio fingerprint extraction approach to video 
fingerprinting. The audio fingerprinting system converts the 
spectrogram into binary images, and then encodes the positions of 
salient regions selected from each binary image. Visual features are 
extracted in a similar way from the video images. We propose two 
visual fingerprint generation methods where fingerprints encode 
the positions of salient regions of greyscale video images. Salient 
regions of the first method are selected based on the intensity 
values of the image, while the second method identifies the regions 
that represent the highest variations between two successive 
images. The similarity between two fingerprints is defined as the 
intersection between their elements. The search algorithm is 
speeded up by an efficient implementation on a Graphics 
Processing Unit (GPU). We evaluate the performance of the 
proposed video system on TRECVID 2009 and 2010 datasets, and 
we show that this system achieves promising results and 
outperforms other state-of-the-art video copy detection methods for 
queries that do not includes geometric transformations. In addition, 
we show the effectiveness of this system for a challenging 
audio+video copy detection task. 
 
Index Terms— Content-based copy detection, feature extraction, 
video fingerprint, fingerprinting.
 

1.�INTRODUCTION�
 
According to a study by the International Data Corporation (IDC), 
the digital universe is doubling in size every two years to reach 44 
trillion gigabytes by 2020 [1]. A large part of this big universe 
consists of audio and video, which are distributed over the Internet 
in an effortless way. In fact, video hosting services have facilitated 
sharing and distributing of video content. For example, 300 hours 
of videos are uploaded to YouTube every single minute [2]. 
Unavoidably, a large number of the uploaded videos are illegal 
copies of digital material protected by copyright law. Copyright 
infringement is one of the biggest issues that hosting web sites 
have to deal with to avoid lawsuits by the copyright holders.  

To prevent copyright infringements, Content-Based Copy 
Detection (CBCD) has been recently introduced as an alternative 
to the watermarking approaches [3]. Instead of inserting additional 
information to the content, CBCD uses the content itself as a 
watermark. It extracts relevant features (fingerprints) from a 
candidate copy and then compares them against fingerprints of the 
original content. However, audio and video signals are subjected to 
various kinds of transformations that make the task challenging.  

Color-based fingerprints are among the first video features 
used in video copy detection [4-7]. Despite their popularity, these 
features are sensitive to several video transformations such as 
insertion of logos, compression and change of color [6].  

The ordinal measure [8] divides each image into N blocks and 
sort them according to their average grey level. The ordinal 
measure of a given frame is defined by a vector containing the rank 
of each block. This technique is used in a similar way in [9]. 
However, instead of ranking regions in the image, a temporal 
window is used to rank regions along the time.  

Another global feature scheme consists of using a Bag-of-
global visual features based on a DCT-sign-based feature [10]. 
They performed multiple assignments of visual words in the 
feature, spatial, and temporal domain to improve repeatability of 
Visual-Words based feature matching. In [11], TIRI-DCT is 
proposed to generate spatio-temporal fingerprints based on the 
Temporally Informative Representative Images (TIRI) [12].  

In [13], the video is modeled using a graph that represents the 
relations among different frames. This graph-based modeling 
scheme achieved good results when evaluated on a small dataset, 
and performed as well as the TIRI-based method [11]. On the other 
hand, several papers propose to generate fingerprints based on 
local information of the image [14-17]. A comparison between 
global and local features shows that local features outperform 
global features when evaluated on three different datasets [18]. 
Similarly in [19], local features based on SIFT show their 
robustness against transformations that change the content of the 
video frame compared to the global based feature.  

A good multimodal feature representation that exploits the 
complementary audio features, local visual features and global 
visual features is described in [20]. The audio part of this system is 
based on the Weighted Audio Spectrum Flatness (WASF) features 
introduced in [21]. A local visual feature of dense color SIFT (DC-
SIFT) [22] is used as local feature, whereas the global visual 
feature is based on DCT feature. The similarity search is performed 
using a temporal pyramid-matching algorithm, where several 
techniques are employed to speed up the search. This system 
achieved excellent results on TRECVID 2009 and 2010 datasets 
when the results obtained by the individual features are combined 
using a result-level fusion mechanism [20]. 

 In [23], audio fingerprints [24] are used with the ordinal 
signature [25] to perform a two-step search. First, a number of 
candidate videos are selected based on the audio results. Then 
visual features are extracted from the selected candidates and 
combined with the audio fingerprints to produce the final results. 

In this paper we extend our work on multimedia copy detection 
[26]. The idea behind the proposed video extraction method is 
adopted from the audio feature extraction method introduced in 
[27]. Audio fingerprints generated with this method encode the 
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positions of salient regions of binary images derived from the 
spectrogram. These spectrogram-based fingerprints have proved 
their robustness against a variety of audio transformations. In order 
to see if the audio fingerprint extraction scheme will work well for 
video fingerprints, we introduce two new visual feature extraction 
methods and we compare them to two other visual features. Results 
of this comparison on TRECVID 2009 and 2010 datasets show the 
robustness of the proposed visual features, especially for queries 
that do not include geometric transformations. We also describe a 
simple fusion technique to detect video queries transformed by 
audio and video transformations. We show that the overall system 
achieves excellent video detection performance for the task of 
audio+video copy detection. 

 
2.�SYSTEM�OVERVIEW�

First, we convert each reference video into a sequence of greyscale 
images, and we change their sizes to a fixed size (width = height = 
300 pixels). After preprocessing, we extract fingerprints from these 
images and we store them into a video fingerprints database.  

Video queries go through many complex transformations and 
may contain a combination of transformations. Hence, we generate 
fingerprints for the original video query and a flipped version of 
the video query. Besides, we propose a Picture in Picture (PiP) 
detection algorithm that detects PiP from the query and then 
extracts the foreground video before extracting the features. 

 
2.1.�PiP�Detection�
 
First, we select a fixed number of images from the video query (in 
our experiments we select 50 images). These images are selected 
uniformly and regardless of the video length. We process in this 
way to avoid handling all the query frames and reduce, therefore, 
the processing time. Then, we divide each selected image into 5 
regions (four corners and the center), where the size of each region 
is equal to the half of the original image size. Then, each selected 
image region is processed as described in Figure 1.  
 

 
Figure 2 shows results of performing steps 2-4 of Figure 1 on 

six images (central region of the original image), where 
intersection points of the detected segment lines are marked with 
red points. Notice that we keep only horizontal and vertical line 
segments, and we extend the extremities of each segment to force 
intersection of short segments. For every processed image, we keep 
locations of intersection points and increment the number (score) 
of their appearances (step 4-5). Once all the images have been 
processed, we merge locations and scores of points that are very 

close (step 6), and keep the four most frequent intersection points 
(step 7). These top-4 points represent corners of the candidate PiP 
region. Finally in step 8, we verify if these corners form a rectangle 
based on some criteria (size of sides, parallel and vertical sides). 

 
2.2.�Video�Fingerprint�Extraction�
 
The proposed feature extraction is adopted from the audio feature 
extraction method described in [27]. This method generates binary 
images from the spectrogram and then encodes the position of 
several salient regions that have the highest spectral values in each 
binary image. Video feature extraction is based on the same idea as 
the audio feature extraction: positions of salient regions of an 
image have good chance to survive signal degradation. The 
question is how can we define a visual salient region?  

Audio fingerprints are extracted from a binary image derived 
from the spectrogram, where a value of 1 denotes a time-frequency 
peak. In other words, a value of 1 indicates the presence of 
information, and a value of 0 denotes absence of information. 
Thus, a salient region is the part of the binary image that has more 
information than the others. Multiple audio fingerprints describe, 
therefore, the localization of information over time regardless of 
the real intensity values. In contrary, video images are more 
complex, and each pixel may hold useful information.  

We propose two different fingerprint extraction schemes: V-
intensity and V-motion fingerprints. For these two extraction 
methods, we divide the image using a tile of size 20 × 20 for a total 
of 225 squares, and we compute the sum of the pixel values in each 
square. Then, each method selects d squares per image. The 
positions of the selected squares (i.e. salient regions) represent the 
final fingerprint. V-motion and V-intensity fingerprints are 
selected as follows: 

 
Vintensity: this method sorts the squares by their values and takes 
d/2 squares before and d/2 squares after the square with the median 
value. In other words, we take image regions that are neither black 
nor white, but grey regions. The grey regions are the regions of 
interest for distinguishing video frames. An illustration of this 
method is given in Figure 3, where the selected regions are 
represented in grey background.

 
Figure�1.�PiP detection steps. 

 
Figure�2.  Example of PiP detection. 
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Figure�3. Illustration of V-intensity fingerprint generation scheme. 
 
Vmotion: V-motion fingerprints are detected by looking for the 
regions that have the highest variations compared to the same 
regions in the previous frame. Figure 4 illustrates the principal 
steps to extract V-motion fingerprints. In this figure, the square 
values difference between frame 1 and frame 2 indicates the degree 
of intensity variations between these two successive frames. The 
regions that have the highest variations are the salient regions. 

 
Figure�4. Illustration of V-motion fingerprint generation scheme. 

 
2.4.�Fingerprint�retrieval�
 
The fingerprint retrieval algorithm is composed of two principal 
steps: a similarity search algorithm followed by a matching step. 
The similarity search labels each reference frame with the closest 
query frame. In the second step, we move the query over the 
references to compute the number of matching frames between 
them. A detailed description of this algorithm can be found in [27]. 

Computing the distance between each reference fingerprint and 
all query fingerprints is time consuming. This is a common 
problem in the CBCD task, where tens of millions of fingerprints 
are generated from multimedia dataset. In order to accelerate the 
similarity search algorithm, we implemented the similarity search 
algorithm on a Graphics Processing Unit (GPU). Compared to the 
CPU implementation, the GPU implementation accelerated the 
similarity search by over 150 times [28].  
�

3.�EXPERIMENTS�

This section evaluates our system on TRECVID 2009 and 2010 
copy detection datasets. First, we evaluate our system for the video 

only task, while comparing the results to two video fingerprinting 
methods. Then, we give results for the audio+video copy detection 
task (i.e. the query is transformed by audio and video 
transformations). Finally, we compare the audio+video results with 
the best published results on TRECVID 2010 dataset. 
 
3.1.�Datasets�
 
TRECVID 2009 and 2010 datasets are provided by NIST [29]. 
Each of these datasets consists of a reference collection of about 
400 hours of videos. There are 201 original queries, each query 
altered with 7 audio transformations (for a total of 1407 audio 
queries) and 8 video transformations (for a total of 1608 video 
queries). Descriptions of audio and video transformations are 
shown in Table 1. The total number of audio+video queries for 
TRECVID 2010 is equal to 11256 containing 56 transformations 
(7 audio × 8 video transformations). In TRECVID 2009, 49 
audio+video transformations (7 audio × 7 video transformations) 
results in 9849 audio+video queries. Note that V1 transformation 
is not applied in TRECVID 2009. To evaluate the copy detection 
performance, we use the minimal Normalized Detection Cost Rate 
(min NDCR). NDCR is a weighted cost combination of the 
probability of missing a true copy and the false alarm rate. 

 
3.2.�Video�Only�Results�

 
The experimental results on TRECVID 2009 and TRECVID 2010 
datasets for V-intensity and V-motion features are shown in Table 
2. These results are compared with DC-SIFT and DCT features. 
From Table 2 it can be seen that V-motion performs better than V-
intensity for all transformations and on both datasets (except V4 on 
TRECVID 2009). Although these two features achieved good 
results for transformations V3, V4, V5 and V6 that do not include 
geometric transformations, they give relatively higher min NDCR 
for transformations that change the content of the images. This is 

Table�1.��Description of audio and video transformations.�

Type�Label� Description�

A
ud

io
 

tra
ns

fo
rm

at
io

n 

T1 Nothing 
T2 mp3 compression 
T3 mp3 compression and multiband companding 
T4 bandwidth limit and single band companding 
T5 mix with speech 
T6 mix with speech, then multiband compress 
T7 bandpass filter, mix with speech, compress 

V
id

eo
 

tra
ns

fo
rm

at
io

n 

V1 Simulated camcording 
V2 Picture in picture type 1: original video in front of 

background video 
V3 Insertions of pattern 
V4 Strong re-encoding 
V5 Change of gamma 
V6 Decrease in quality: introducing 3 randomly selected 

combination of Blur, Gamma, Frame dropping, 
Contrast, Compression, Ratio, White noise 

V8 Post production: introducing 3 randomly selected 
combination of Crop, Shift, Contrast, Text insertion, 

Vertical mirroring, Insertion of pattern, Picture in 
picture 

V10 Combination of 3 randomly selected transformations 
chosen from V1-V8
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noticeable for transformation V1 that gives the highest min NDCR 
compared to the rest of the transformations. In fact, global visual 
features are usually sensitive to such transformations, as confirmed 
by the results of DCT feature. 
  
Table�2. Min NDCR per transformation achieved by different 

visual features on TRECVID 2009 and 2010 datasets. 
 Feature� V1� V2� V3� V4� V5� V6� V8� V10�

20
09
� V-intensity - 0.351 0.56 0.007 0.007 0.007 0.552 0.448 

V-motion - 0.284 0 0.045 0 0 0.231 0.313 
DC-SIFT - 0.112 0.03 0.09 0.024 0.142 0.201 0.149 

DCT - 0.224 0.164 0.119 0.104 0.231 0.41 0.306 

20
10
� V-intensity 0.985 0.634 0.276 0.097 0.067 0.149 0.53 0.463 

V-motion 0.896 0.545 0.03 0.082 0.03 0.112 0.321 0.358 
DC-SIFT 0.285 0.154 0.054 0.146 0.038 0.223 0.292 0.2 

DCT 1 0.377 0.246 0.2 0.146 0.323 0.585 0.415 
 

The comparison between DCT and V-motion shows that V-
motion gives better results for most of the transformations on both 
the datasets. DC-SIFT works better on transformations that modify 
the content and achieved the best results for V1, V2 and V10 
transformations on TRECVID 2009. In fact, V-motion gave the 
best results for four transformations (V3, V4, V5 and V6) on both 
datasets. For these four transformations, V-motion missed only one 
query (transformed with V4) on TRECVID 2009 (see Table 3).  

 
Table�3.�Number of missed queries for V-intensity and V-motion 

on TRECVID 2009 dataset. 
Feature� V1� V2� V3� V4� V5� V6� V8� V10�

V-Intensity - 45 14 1 1 0 65 57 
V-motion - 36 0 1 0 0 23 35 
 
In order to evaluate the performance of PiP detection, we count 

the number of PiPs correctly detected for both datasets in Table 4. 
As mentioned above, there were 201 PiP queries composed of 134 
reference copies and 67 queries from non-reference videos (i.e. 
false alarms). As can be seen from Table 4, the PiP algorithm 
detects between 73% and 79% of the inserted PiPs for TRECVID 
2009 and 2010 datasets, respectively. 

 
Table�4.�PiP detection performance.�

Dataset� Detected� Missed� %�of�detection�
TRECVID 2009 98 36 73% 
TRECVID 2010 106 28 79% 
 

3.3.�Audio+Video�Results�
 

We use a simple strategy to combine audio and video results. First, 
we generate results separately for the audio [27] and the proposed 
video systems. Then for each query, we keep the best result 
(highest score) achieved by either the audio or the video. In other 
words, for a given query, if the best reference audio score is higher 
than the best video reference score, then we take the audio result, 
otherwise, we take the video result. This fusion results in a very 
good performance. In fact, the min NDCR averaged over all 
transformations is equal to 0.021 and 0.053 for TRECVID 2009 
and 2010 datasets, respectively. From a total of 9849 queries in 
TRECVID 2009, our system missed only 122 queries (98.7% 
correctly detected). On TRECVID 2010, 347 queries are missed 
from a total of 11256 queries (96.9 % correctly detected). 

Finally, we compare in Figure 5 our audio+video system to the 
method described in [20] (the Perseus system) that combines the 
results obtained by the audio part using WASF feature, and the 
video results obtained using DC-SIFT and DCT visual features. 
This method achieved the best results for almost all the 
transformations in the TRECVID 2010 evaluation campaign [30].  

It can be seen from Figure 5 that our system achieved 
comparable results to the Perseus system and outperforms it for 35 
out of 56 transformations. Furthermore, our system gave a lower 
min NDCR (averaged over all transformations) of 0.056 compared 
to 0.06 achieved by Perseus system. 

 

Figure� 5.� Min NDCR of the proposed system for audio+video 
transformations compared to Perseus system on TRECVID 2010.�
 

4.�CONCLUSION�
 

This paper describes a robust multimedia fingerprinting system that 
can be used to detect video copies subjected to complicated audio 
and video transformations. The proposed video feature extraction 
is similar to a state-of-the-art audio copy detection feature 
extraction strategy that converts the audio into a set of binary 
images, and then encodes the positions of several selected regions 
from each binary image. In this work, instead of extracting 
fingerprints from binary images, visual features are extracted from 
greyscale video images (for robustness to color transformations).  

We propose V-intensity and V-motion features and show that 
V-motion is more robust to video transformations than V-intensity. 
V-intensity selects salient regions based on the intensity values of 
the image, while V-motion identifies the regions that represent the 
highest intensity variations between two successive images. We 
compare these two methods to DCT and DC-SIFT features using 
TRECVID 2009 and 2010 datasets. We show that V-motion 
achieves excellent results for all queries that do not include 
geometric transformations and outperforms the other features for 
these transformations. To address the PiP transformation, we 
propose a PiP detection technique that detects 79% of PiP on 
TRECVID 2010 dataset. We also tested our system for the 
audio+video copy detection task where the queries are transformed 
by a combination of audio and video transformations. These 
queries are detected by taking the best result achieved by the audio 
and video systems. This audio+video merging works very well and 
it gave excellent min NDCR of 0.021 and 0.053 for TRECVID 
2009 and 2010 datasets, respectively. This compares well with the 
best published min NDCR of 0.06 for the TRECVID 2010 dataset 
for the no false alarm case. 
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