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ABSTRACT

Patients with locked-in-syndrome (fully paralyzed but aware)
struggle in their life and communication. Providing a level
of communication offers these patients a chance to resume
a meaningful life. Current brain-computer interface (BCI)
communication requires users to build words from single
letters selected on a screen, which is extremely inefficient.
Faster approaches for their speech communication are highly
needed. This project investigated the possibility to decode
spoken phrases from non-invasive brain activity (MEG) sig-
nals. This direct brain-to-text mapping approach may provide
a significantly faster communication rate than current BCIs
can provide. We used dynamic time warping and Wiener
filtering for noise reduction and then Gaussian mixture model
and artificial neural network as the decoders. Preliminary
results showed the possibility of decoding speech production
from non-invasive brain signals. The best phrase classifica-
tion accuracy was up to 94.54% from single-trial whole-head
MEG recordings.

Index Terms— Brain computer interface, MEG, speech
production, locked-in syndrome, neural decoding

1. INTRODUCTION

Brain damage or neurodegenerative disease (e.g., amy-
otrophic lateral sclerosis) may cause locked-in syndrome
(fully paralyzed but aware) [1]. There is an incidence rate 0.7
/ 10,000 for locked-in syndrome [2]. Patients with locked-in-
syndrome struggle in their life and communication. Providing
a level of communication offers these patients a chance to re-
sume a meaningful life [3]. Brain activity may be the only
pathway to facilitate the operation, control, and communica-
tion for these patients, because it bypasses the motor control
mechanisms [4, 5, 6, 7].

Recent advances in BCIs have been applied for a num-
ber of potentially life-changing technologies for the disabled
[8], including mechanical arm movement [9] and wheel-chair
navigation [10]. Currently, the most widely used EEG-based
BCIs for speech communication require users to select from a
list of options (e.g., selecting single letters to build words) us-
ing visual or attention cues on a screen [8]. These approaches
result in a slow communication rate of less than one word per
minute [11, 12]. Faster approaches for speech communication
are highly needed.

A direct mapping from brain activity signals to speech
(text) will potentially provide a significantly faster commu-
nication rate than current BCIs can provide. Until recently,
however, low spatial or temporal resolution of non-invasive
neuroimaging devices (e.g., EEG and fMRI) has been a bar-
rier for developing this efficient assistive technology. More-
over, the development of this direct mapping approach has
been hindered by lack of effective computational methods.

MEG records the magnetic field changes produced by
electrical current flows in the brain [13], and is able to obtain
real-time resolution recordings of brain activity with higher
spatial solution than EEG or fMRI [14]. The unique data
characteristics makes MEG suitable for brain disorders that
are sensitive to time and space. In addition, MEG is quiet
and thus friendly for users. Prior MEG studies examining
speech perception portend promising outlooks for decoding
speech production within brain activity signals [15, 16, 17].
However, decoding speech production from MEG signals has
rarely been studied.

The aim of this project is to decode latent speech from
single trial MEG sensor data during an overt production task
using machine learning approaches together with noise reduc-
tion techniques. In addition, the use of data from the whole-
head (all sensors) or from speech related regions (i.e., Wer-
nicke’s area, Broca’s area, and motor cortex) were compared.
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(a) The MEG system (b) Sensor map (top view)

Fig. 1. Setup in data collection.
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Fig. 2. Segments within a trial (block or repetition) in the MEG recording

2. DATA COLLECTION

2.1. Subjects and equipment

Two right-handed, male adults participated in this study. Both
were fluent English speakers with normal or corrected to nor-
mal vision and no history of neurological or speech disorder.

Data acquisition was carried out at the MEG Center,
Cook Children’s hospital, Forth Worth, Texas. Neuromag-
netic brain activity was recorded using a 306 channel Elekta
Triux MEG machine, equipped with 204 planar gradiometers
and 102 magnetometers (Figure 1a) and housed in a two layer
magnetically shielded room (MSR). Data acquisition was
performed at a 4kHz sampling rate with an online band-pass
filter of 0.1 to 1300Hz. The sensor map is illustrated in Figure
1b. Subjects eye-blinks and cardiac signals were recorded via
integrated bipolar EEG channels. Continuous head localiza-
tion, a state-of-the-art technique for tracking subjects head
position was used to monitor head motion. Voice production
was recorded via a standard microphone attached to a trans-
ducer situated outside the MSR. Task related jaw movements
were recorded by a custom air-pressure sensor connected to
an air-filled bladder that was fixed to the subjects jaw in such
a way as to cause depression during movement. Both voice
and movement analog signals were fed into the MEG ADC
channels and digitized in real-time as separate channels.

2.2. Procedure and task

Before recording, 3 fiducial points and 5 head-position-coils
were digitized using Polhemus Fastrak for creating the subject
coordinate system and head positioning in the MEG scanner,
respectively. Subjects were then comfortably seated within
the MEG unit with their arms resting on a table. A DLP pro-

jector connected to the stimulus computer displayed stimuli
on a back-projection screen situated approximately 90cm in
front of the subject. The task was a delayed overt reading
task that consisted of pronouncing five short commonly used
phrases: how are you doing?, I am fine, I need help, That’s
good, and Good-bye.

Phrase stimuli were presented on the screen for 1 sec-
ond, followed by a 1 second fixation cross. Termination of
the fixation heralded a blank screen that signaled the subject
to overtly produce the phrase just previously shown. Sub-
jects had 2 (up to 2.5) seconds to perform the speech before
the next stimulus was presented. For most trials performance
was accomplished within 1.5 seconds, providing for roughly
1 second of non-movement baseline before the start of the
next trial (Figure 2). Each stimulus was presented 100 times
in pseudo-randomized order to avoid response suppression to
repeated exposure [18, 19]. Prior to starting the subjects were
trained on sample stimuli to assure compliance. The entire
experiment took approximately 45 minutes.

2.3. Data preprocessing

MEG sensor data were epoched into trials from -0.5 to +4.0
seconds centered on stimulus onset. Data preparation was
performed in two steps. Data were visually inspected and
trials containing erroneous movements that started either be-
fore the cue to speak or existed within the baseline period
for the next trial were removed [18]. Of the remaining trials,
those that contained excessive EOG or other large artifacts
not related to movement were excluded. The data were then
band-pass filtered between 1 and 250Hz and down-sampled to
1000Hz. These data were then forwarded for decoding analy-
sis. Erroneous samples (e.g., due to wrong articulation) were
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Fig. 3. Illustration of (a) dynamic time warping and (b) Wiener filtering for MEG data processing.

excluded. A total of valid 819 samples were collected from
the two subjects.

3. DECODING METHODS

Before the MEG trials were fed into a classifier, three fur-
ther processing steps were applied sequentially to remove the
noise including dynamic time warping (DTW), wiener filter-
ing, and gamma band filtering (30 - 100 Hz). Gamma band
energy was estimated across the 50 ms time-series windows
with 25 ms steps. Two machine learning classifiers - Gaussian
mixture model (GMM) and artificial neural network (ANN) -
were used as the classifiers/decoders.

3.1. Dynamic time warping (DTW)

DTW is arguably the best distance (or similarity) measure
among time-series signals [20]. DTW calculates the summed
Euclidean distances between the corresponding data points
of two time-series signals, after aligning the peaks. DTW is
particularly useful for signals with temporal variations (e.g.,
speech). In this paper, DTW was used as a data processing
tool for removing the temporal variation in individual MEG
trials. For each of the five phrases, the first trial was selected
as the reference. Then, all other trials were warped to the ref-
erences using DTW. Figure 3a shows a few (amplitude nor-
malized) trials of one phrase (how are you doing?) in the
preparation segment from one sensor (MEG1612) before and
after applying DTW, where the green signal is the reference.

3.2. Wiener filtering

Wiener filtering is widely used in noise reduction for robust
speech recognition. We adopted Wiener filtering to reduce
MEG noise. A Wiener filter produces an estimate of target
random process by linear-time invariant filtering of observed

noisy process [21]. In this paper, we used the pre-stimuli seg-
ment data to estimate noise statistics. Figure 3b gives exam-
ples of Wiener filtering, where top row is the original sig-
nal (from sensor MEG1643, Wernicke’s area) and its spectro-
gram; the bottom row is the filtered signal and filtered spectro-
gram (signals were amplitude normalized). The filtered sig-
nal and spectrogram clearly indicate the major events (visual,
perception, and production).

3.3. Gaussian mixture model

Gaussian mixture model (GMM) is to model the data vari-
ation using Gaussian distribution, which has been used in
speech recognition for decades [22]. Given Gaussian com-
ponents, GMMs can model the relationship between features
and target classes as a mixture of Gaussian density functions.
GMM is a generative model and trained to represent as closely
as possible the distribution (e.g., using means and variances)
of training data. In this experiment, each class (phrase) has
10 Gaussians with diagonal covariances on average.

3.4. Artificial neural network

Artificial neural network (ANN) is a powerful non-linear
computational modeling tool, used widely to model the com-
plex relationship between inputs and targets. ANN is also
widely used in pattern classification. In this paper, the input
layer took 5 frames at a time (2 previous plus current plus
2 succeeding frames). Each frame had Gamma band energy
from a frame size of 50 ms with a shift size of 25 ms. The
output layer has 5 dimensions (5 phrases). The number of
nodes in the hidden layer is 64 and the sigmoid activation
function is used. The weights for nodes in the hidden layer
at iteration (t + 1) are updated based on iteration (t) in a
stochastic gradient descent way:

wij(t+ 1) = wij(t) + η
∂C

∂wij
(1)
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Table 1. Phrase classification results using data segments (%)

Method Sensors (#) Pre-stimuli Perception Preparation Production

GMM
Whole-head (200) 48.59 77.39 77.98 88.88
Speech related regions (20) 27.56 58.94 58.31 61.91

ANN
Whole-head (200) 36.34 86.38 90.38 94.54
Speech related regions (20) 29.24 63.67 60.04 63.03

where wij is the weight between nodes i and j in neighboring
layers, η is the learning rate, and C is the cross-entropy cost
function. The implementation of GMM and ANN in Kaldi
toolkit were used in this paper [23].

3.5. Classification experimental setup

Although the focus of this paper was decoding speech produc-
tion, the classification was conducted on all segments includ-
ing pre-stimuli (-0.5-0.0s), perception (0.0-1.0s), preparation
(1.0-2.0s), and production (or articulation, 2.0-3.0s). Here,
zero point is when stimulus was displayed. We hypothesized
the results from the pre-stimuli segment will be low (close to
chance level 20%); the results from other segments will be
significantly higher than the chance level.

In addition, to compare the classification using the whole-
head recording or the speech related regions, we compared
the performances between using all 200 plannar gradiome-
ters and only 20 selected sensors from the speech and motor
related regions (i.e., Broca’s area, Wernicke’s area, and the
motor cortex) [24]. Following are these sensors:

MEG1612, MEG1613, MEG1622, MEG1623, MEG1632,
MEG1633, MEG1642, MEG1643, MEG0212, MEG0213,
MEG0222, MEG0223, MEG0322, MEG0323, MEG0332,
MEG0333, MEG0342, MEG0343, MEG0412, MEG0413

Four-fold cross validation was used in this experiment,
where a quarter of the data for testing and the rest for train-
ing in a validation. The average classification accuracy (%)
of the four validations was the overall performance. In this
exploratory stage, the classification experiment was executed
within each subject (speaker-dependent classification).

4. RESULTS AND DISCUSSION

Table 1 shows the average classification accuracy across the
two subjects for each segment using the GMM and ANN
methods with either 200 whole-head channels or the 20 se-
lected channels. The accuracy for decoding during the pre-
stimulus period was at or just above chance, whereas that of
the perception, preparation, and production periods were all
significantly higher [25], indicating the potential for decoding
speech information from single-trial MEG signals. Addition-
ally, results were the best using the ANN method with the
whole head data during the production period (94.54%).
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Fig. 4. Phrase classification results on individual subjects (S1
and S2) using the production/articulation segment data.

The fact that decoding with whole-head analysis outper-
formed selected sensors may indicate that a distributed net-
work is involved in providing salient features for speech pro-
duction [24]. On the other hand, we observed slightly higher
(than chance level) decoding accuracy in the pre-stimulus seg-
ment for whole-head analysis as well, which suggested a pos-
sible slight over-fitting. The degree of over-fitting (if any) will
be explored in further analysis. Last, ANN generally outper-
formed GMM in all configurations for all individual subjects
(Figure 4).

5. RELATION TO PRIOR WORK

To our knowledge, this is the first non-invasive or MEG study
to examine neural decoding of overt speech production. As
mentioned previously, prior work using MEG has focused on
speech perception (e.g., decoding speech from the perception
segment) [15, 16, 17]. A recent study showed promising re-
sults in decoding speech production from invasive (ECoG)
signals [26].

6. CONCLUSION AND FUTURE WORK

This paper demonstrated the possibility of decoding speech
production from single trials of non-invasive (MEG) signals.
A larger data set will be used to verify these findings.
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