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ABSTRACT
The P300-based brain-computer interface (BCI) speller relies on
eliciting and detecting specific brain responses to target stimulus
events, termed event-related potentials (ERPs). In a visual speller,
ERPs are elicited when the user’s desired character, i.e. the “tar-
get,” is flashed on a computer screen. The P300 speller is currently
limited by its relatively slow typing speed due to the need for repet-
itive data measurements that are necessary to achieve reasonable
signal-to-noise ratios. In addition, refractory effects limit the ability
to elicit ERPs with every target stimulus event presentation. In this
paper, we present a new method to design the stimulus presentation
paradigm for the P300 speller by exploiting an information-theoretic
approach to maximize the information content that is presented to
the user while also mitigating refractory effects. We present results
with real-time BCI use which demonstrate significant performance
improvements with our performance-based paradigm compared to
the conventional stimulus presentation paradigm.

Index Terms— Brain-computer interface, P300 speller, Stimu-
lus paradigm, Coding theory, Combinatorial problem.

1. INTRODUCTION AND RELATION TO PRIOR WORK

The P300-based brain-computer interface (BCI) [1, 2], relies pre-
dominantly on event-related potentials (ERPs) as control signals to
enable a user to make selections from an array of character choices.
These ERPs are elicited as a function of a user’s uncertainty regard-
ing stimulus events in either an acoustic, tactile or a visual oddball
recognition task [3]: the random occurrence of a rare oddball or
target stimulus within a sequence of more frequently occurring or
non-target stimuli. Ideally, the target stimulus elicits a distinct ERP
response that includes a large positive peak, termed the P300 signal.

In a visual BCI speller, a user selects a character by focusing on
that character while groups of characters are randomly illuminated
on a screen, such as shown in figure 1. In this scenario, the illumina-
tion of the desired character, which is presented in a few of the flash
groups, corresponds to a target stimulus event. Given a grid layout,
a simple method of grouping characters is by the rows and columns
of the grid and presenting them in a random order. This is known as
the row-column paradigm (RCP) [1], which is used predominantly
in the literature [4].

The P300 speller operates by analyzing electroencephalography
(EEG) responses to the stimulus events in order to discern a user’s
intended character. Due to the low signal-to-noise ratio (SNR) of
elicited ERPs embedded in noisy EEG signals, data are collected
from multiple presentations of a potential target character to increase
the SNR for improved selection accuracy. These repetitive data mea-
surements contribute to the slow spelling speeds of ERP-based BCIs.
Typically, a group of characters is presented in a single stimulus
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Fig. 1. BCI speller interface with a 6×6 grid layout. In this example,
the fourth column is illuminated or ”flashed.”

event to increase the character presentation rate. However, this in-
creases the likelihood of selection errors due to the added correlation
in the cumulative EEG responses of characters that are often grouped
together. For example, in the RCP, erroneous character selections are
usually in the same row or column as the target character [5]. An-
other limitation is the negative impact on performance due to refrac-
tory effects as the relative strength of ERP responses is affected by
the timing between target stimulus events, or the target-to-target in-
terval (TTI). Due to the randomized order of presentation of the row
and column flash groups in the RCP, there is the possibility of two
consecutive target character presentations. In general, classification
performance improves with increasing TTI [6, 7].

Re-designing the stimulus presentation paradigm has the poten-
tial to minimize selection errors caused by grouping characters for
presentation or refractory effects. Some approaches have focused
on cosmetic changes to the user interface to either increase focus or
elicit other ERPs that can enhance performance, e.g. arranging flash
groups into spatially distinct clusters [8], or using distinct elements
during stimulus presentation [9, 10]. Other approaches impose a
minimum TTI to mitigate refractory effects, e.g. [7, 11]. However,
with all these previous approaches, the generation and presentation
of flash groups are randomized with limited consideration for maxi-
mizing the information content that is presented to the user.

Alternatively, a BCI can be modeled as a noisy communica-
tion system, which provides a more principled framework for the
design of the stimulus flash groups in terms of information presenta-
tion. Coding theory [12] provides a principled approach to packag-
ing information for efficient communication in spite of noisy channel
transmission. In the P300 speller, a character is encoded via its pre-
sentation pattern, which can be represented by a binary codeword,
XT

1 = [x1, x2, ..., xT ], where xt ∈ {0, 1} denotes the absence
or presence, respectively, of a character in a flash group. A stimulus
presentation paradigm is represented by a codebook, C ∈ [0, 1]M×T ,
where C(m, :) corresponds to the codeword for character Cm. For
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Fig. 2. Codebook for the RCP for the speller grid shown in figure
1. Each column represents a flash group, with presented characters
highlighted in white. Each row represents a character’s codeword.

the speller grid shown in figure 1, figure 2 shows a sample codebook
for the RCP, with a mapping of each character to its codeword.

Some studies have used an information-theoretic approach to de-
sign codebooks for the P300 speller, by focusing on minimizing de-
coding errors by maximizing the dissimilarity or Hamming distance
between codewords [13, 14, 15]. However, performances with the
proposed codebooks were similar to or worse than that of the RCP in
online testing. The codebooks in [13, 14, 15] were characterized by
codewords with predominantly short TTIs, a consequence of maxi-
mizing Hamming distances with a memoryless channel assumption.

In this work, we focus on using an information-theoretic ap-
proach for codebook construction that explicitly considers the phys-
iological limitation of the ERP elicitation. Unlike the previous
approaches, we consider a communication channel with long term
memory to past target stimulus event presentations. In addition, we
use a performance prediction method [16] to objectively compare
codebook configurations prior to making a final selection. We de-
note the stimulus presentation paradigm developed with our new
method as the performance-based paradigm (PBP). We present re-
sults demonstrating the utility of the performance prediction method
to select a codebook configuration for the PBP, which statistically
significantly improves performance compared to the RCP.

2. THE PERFORMANCE-BASED PARADIGM

Our approach to developing a codebook involves selecting from an
exponentially large 2l search space, a codebook of M l-bit code-
words or an (M, l)-code that maximizes performance with a given
BCI algorithm. For a dynamic stopping (DS) algorithm, e.g. [17,
18], where the amount of data collection is varied based on a thresh-
old function, this involves a minimization problem of the form:

minimize
C∈[0,1]M×l

EST(αC), subject to A(αC) ≥ Ath. (1)

where EST is the expected stopping time, which is the mean num-
ber of stimulus event presentations prior to stopping data collection;
A is the selection accuracy; Ath is the minimum accuracy desired;
and αC is a generic parameter which we define to quantify a user’s
performance level with a given codebook, C.

2.1. BCI performance prediction

Our performance prediction method is based on a probabilistic
model of a generic ERP-based BCI [16]. During a selection process,
a user intends to select a target character, C∗. Following each stimu-
lus presentation, the user’s EEG response is scored with the system’s
classifier. The BCI uses a function that quantifies the possibility of
each of the BCI choices to be the user’s target choice, given data
collection. We denote this as the character cumulative response
function (CCRF), {Θm(t)}Mm=1, at time index t, for an M -choice
BCI. The classifier score, yt, is used to update {Θm(t)}Mm=1. The
BCI terminates data collection at a stopping time, ts, either when
a maximum CCRF value, Θmax(t), attains a threshold, Θth, or a
data collection limit, tmax, is reached. After data collection, the
BCI makes a selection, Ĉ∗, which is usually the character with the
maximum CCRF value.

The performance functions can be derived analytically based on
the stopping and decision rules. To account for a DS criterion, deter-
mining the EST requires averaging over all possible stopping times:

EST =

tmax∑
t=1

tP (ts = t),

=

tmax−1∑
t=1

tP ({Θmax(t− 1) < Θth} ∩ {Θmax(t) ≥ Θth})

+ tmaxP (Θmax(tmax − 1) ≥ Θth). (2)

Similar to the EST, accuracy is determined by averaging over all pos-
sible stopping times, as well as over all possible character choices:

Ai =

tmax∑
t=1

P

(
{ts = t} ∩

{
max
j 6=i

Θj(t) < Θi(t)

} ∣∣∣∣ Ci = C∗
)
,

(3a)

A =

M∑
i=1

AiP (Ci = C∗) (3b)

Alternatively, performance functions can be obtained from simula-
tions of P300 spelling runs, if the solutions to (2)-(3) are intractable.

In this study, we analyze the Bayesian DS algorithm developed
for the P300 speller [17]. A probability distribution is maintained
over the character choices, {Pm(t)}Mm=1, which represents the level
of confidence that each character is the target character at time index
t. With each new stimulus presentation, the classifier score is used
to update {Pm(t)}Mm=1 by Bayesian inference:

Pm(t) =
pm(t)Pm(t− 1)∑M
j=1 pj(t)Pj(t− 1)

, , (4a)

pm(t) =

{
p(yt|H0), if Cm /∈ Ft

p(yt|H1), if Cm ∈ Ft
, (4b)

where Pm(t−1) and Pm(t) are the prior and posterior probabilities,
respectively; pm(t) is the character likelihood; and p(yt|H0) and
p(yt|H1) are the classifier probability density functions (pdfs) for
the non-target and the target EEG responses, respectively. Data col-
lection is stopped when a character’s probability attains a threshold
probability, Pth, within a data collection limit. The character with
the maximum probability is selected as the user’s intended character.

We derive the performance functions for the Bayesian DS algo-
rithm by parameterizing a user’s performance level with the classifier
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Fig. 3. (a) Illustration of the probability density functions of classifier scores grouped by non-target (H0) and target (H1) responses for
the training data, and the target responses segregated by TTI for the test data. (b) Kullback-Leibler divergence between TTI-segregated and
aggregate target scores for row-column (RCP), random (RndP), and checkerboard (CBP) paradigms, averaged across participants.

detectability index [16]. The detectability index [19], d, is a measure
that quantifies the discriminability between two normal pdfs:

d =
µ1 − µ0√

0.5(σ2
1 + σ2

0)
. (5)

In this case, (µ0, σ
2
0) and (µ1, σ

2
1), are the parameters of the non-

target and target classifier score pdfs, respectively.

2.2. Performance-based parameters

We reduce the 2l search space based on specific parameters that are
tuned to positively affect performance: the minimum Hamming dis-
tance, the codeword density and the minimum TTI. Let dH(ci, cj)
denote the Hamming distance between codewords ci and cj . The
minimum Hamming distance of a codebook, dHmin(C), determines
the maximum number of bit classification errors, eb, that can occur
and still be able to correctly estimate the sent message [12]:

eb = b(dHmin(C)− 1)/2c. (6)

A minimum TTI is imposed to minimize refractory effects by al-
lowing a ”recovery” period between a target character presentations
to increase the likelihood of eliciting ERPs with relatively higher
SNRs. The codeword density, w(c), provides a trade-off between
obtaining higher classifier scores for the target character with more
presentations and lower classifier scores due to shorter TTIs.

To determine an appropriate minimum TTI that minimizes re-
fractory effects, we analyzed participant EEG data from online
implementation of three codebooks: RCP, random (RndP), and
checkerboard (CBP) [11] paradigms. In the RndP, the character
subsets are randomly generated, with the condition that within a
codebook instantiation, a character is only presented again after all
of the other characters have been presented. The CBP is a special
case of the RndP where a minimum TTI is imposed and spatial
restrictions are placed on the composition of flash groups.

For each participant, 10-fold cross validation was performed to
train and test the classifier. During each cross-validation block, we
obtained the trained classifier likelihoods for non-target and target
classifier scores, as well as target classifier scores from the test set,
segregated by TTI. Let the patterns, [..11..] and [..1001..], indicate

TTIs of 1 and 3, respectively. Figure 3(a) shows example pdfs gen-
erated from a participant’s data. The pdf for a TTI of 1 is similar to
the non-target pdf; hence for a target character presented twice suc-
cessively, the system is more likely to infer the second presentation
as a non-target event. For a TTI of 3, the pdf is similar to the target
pdf, as is desirable for more accurate target character selection.

For multiple TTIs, the Kullback-Leibler (KL) divergence be-
tween the TTI-segregated and the aggregate target classifier score
pdfs were determined. Figure 3(b) shows the KL divergence as a
function of TTI, averaged across participants. The TTI-segregated
pdfs of shorter TTIs are noticeably dissimilar from the aggregate tar-
get pdf, to a larger degree in the RndP than in the RCP. The higher
likelihood of generating a low classifier score with shorter TTIs char-
acterizes the potential negative impact on performance due to refrac-
tory effects. These effects are minimized in the CBP where a mini-
mum TTI is imposed. Based on these results, a TTI of 3 appears to
be a suitable selection to minimize refractory effects and the EST.

2.3. Codebook development

We use a greedy search to iteratively build a codebook by adding
a new codeword to a partially-filled codebook such that the objec-
tive function is minimized with respect to the other codewords. The
degree of refractory effects based on the codebook TTI statistics can
significantly affect a user’s performance level, αC [13, 14, 15]. How-
ever, estimating αC requires empirical data collection over all code-
book configurations, which is infeasible. By considering a codebook
space where a user’s performance level is maintained due to mini-
mizing refractory effects, i.e. fixed d, we achieve the same objective
defined in (1) by maximizing accuracy (3). Algorithm 1 outlines
pseudo-code to develop a codebook for the PBP.

In this study, a 6 × 6 grid was used to design a (36, 24)-code.
Since performance is compared to the RCP, the number of code-
book instantiations for the RCP was doubled so that it is also a
(36, 24)-code. For a RCP with a (36, 24)-code, the performance-
based parameters are by definition dHmin = 4, w(c) = 1/6, and
TTImin = 1. For a new PBP, a uniform distribution over characters
was assumed and an iterative search was performed over parame-
ter values, dHmin > 4, w(c) ≥ 1/4, and TTImin = 3, with multiple
codebook configurations compared. A final configuration of the PBP
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Fig. 4. Online participant performances. The mean character selection time, which includes a 3.5 seconds pause between selections, is the
mean amount of time spent per character selection; it is a function of the EST, stimulus duration and inter-stimulus interval. Accuracy is the
percentage of correct selections by the BCI. Bit rate is a communication rate measure based on the mean selection time and accuracy.

Algorithm 1: Pseudo-code for codebook development

1 Function pbpCodebook(M, l, ω, dHmin,TTImin)

2 C2l×l = Space of all l-bit codewords.

3 {C}r = C2l×l remove→ {codewords with w(ci) /∈ ω,TTI(ci) <
TTImin and dH(ci, cj) < dHmin}.

4 Cnew = argmax
ci

∑|Cr|−1
j=1 dH(ci, cj), ci 6= cj , {ci, cj} ∈ Cr

5 while |Cnew| < M do
6 for i = 1 : |Cold| do
7 Ctemp = Cnew

add← Cold(i, :)
8 Atemp(i) = predictedAccuracy(Ctemp) . (see [16])
9 end

10 cnew = argmax
i
{Atemp(i)}|Cold|

i=1

11 Cnew = Cnew
add← cnew

12 {C}r = {C}r remove→ cnew
13 end
14 return Cnew

Notes: X {add← /
remove→ } x: add/remove codeword x to/from codebook X .

was selected and tested online.

3. ONLINE EXPERIMENT AND RESULTS

Twenty healthy participants were recruited at Duke University for a
study approved by the university’s Institutional Review Board. All
participants gave informed consent prior to their experiment session.

The open source BCI2000 software [20] was used to implement
the P300 speller. Data collected from electrodes {Fz, Cz, P3, Pz, P4,
PO7, PO8, Oz} were used for signal processing. EEG signals were
sampled at 256 samples/s and filtered between 0.5-30 Hz prior to
signal processing. Feature extraction, P300 classifier weight vector
and likelihood estimation were performed as outlined in [17]. In
both stimulus presentation paradigms, the stimulus duration, inter-
stimulus interval and time pause between character selections were
set to 62.5 ms, 62.5 ms and 3.5 s, respectively. The online data

collection limit was set at 72 stimulus flashes.
Each participant’s BCI experiment session consisted of copy-

spelling words using the P300 speller with the RCP or PBP. In a
copy-spelling task, the user is instructed by the BCI on which charac-
ter to focus in each selection process. A BCI session had two blocks,
with each block consisting of a calibration run and test run for a
codebook. The block order was randomized across participants. The
calibration run involved copy-spelling five 6-letter words, without
character selection or feedback. Data collected in the calibration run
were used to train a user-specific classifier weight vector and cllas-
sifier likelihoods. In the test run, using the trained classifier param-
eters, participants performed copy-spelling of eight 6-letter words
(except participant 1 and 3 with five words) using the Bayesian DS
algorithm, with feedback presentation and no error correction.

Figure 4 compares the online participant results for both code-
books, and average results are summarized in table 1. Participants
statistically significantly reduced their mean character selection time
and improved accuracy with the PBP, resulting in improved commu-
nication rates. The online performances follow the predicted trends.

Table 1. Summary of average participant online results
Performance measure RCP PBP p value
Character selection time (s) 9.97± 2.06 8.45 ± 1.78 < 10−4

Accuracy (%) 67.08± 22.51 74.96 ± 18.15 < 10−2

Bit rate (bits/min) 18.94± 12.90 24.93 ± 12.50 < 10−3

4. CONCLUSIONS

We have developed a new performance-based approach to design
stimulus presentation patterns or codebooks for the P300 speller,
which balance the conflicting interests of information theoretics and
physiological limitations. Our results show that this approach sig-
nificantly improves performance across a wide range of user per-
formance levels. Further validation of the proposed method will be
done in a target BCI user population. Future work includes an adap-
tive codebook design process that incorporates language information
to potentially improve performance.
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