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ABSTRACT

We propose a TDOA-based algorithm for source localization on
rigid surfaces. This allows the conversion of readily available
large surfaces into touch interfaces using surface-mounted vibration
sensors. To achieve this, we characterize the arrival of each sensor-
received signal by the arrival times of its frequency components.
To estimate the arrival time of each frequency component, we first
model each component as a harmonic random process. A kurtosis
sequence, which exhibits a sharp rising edge when the signal be-
gins to deviate from the background noise, can then be obtained
for each component. By accurately estimating the starting point
of the rising edge, our algorithm can avoid the uncertainty due to
gradual noise-to-signal transition. Experiment results show that the
proposed algorithm achieves better localization performance than
existing techniques on large surfaces.

Index Terms— Human-computer interface, source localization
on solids, TOA, TDOA, kurtosis

1. INTRODUCTION

In the emerging era of the internet of things (IoT), the way human
interacts with computer has been being revolutionized in various as-
pects. New human-computer interfaces (HCI) are replacing tradi-
tional input devices such as keyboards and mice. In this work, we
propose an impact-localization algorithm that works on rigid sur-
faces, utilizing the vibration signals generated by users on the sur-
face. This provides a cost-effective solution which enables the use
of daily objects such as glass panels and tabletops as HCIs [1–5].
In these applications, vibration signals are captured by low-cost sen-
sors mounted on the surface. The location of the user impact is then
obtained from processing the sensor-received signals.

A popular approach for impact localization is based on the time-
difference-of-arrival (TDOA) information across the sensors [6–12].
Challenges of TDOA estimation on rigid surfaces include disper-
sion and multipath. In the presence of dispersion, wave propagation
velocity is dependent on its frequency, causing signal components
of different frequencies to arrive at a sensor at different times [13].
Multipath, on the other hand, results in signal distortions due to re-
flections from the medium boundaries [14]. The traditional TDOA
estimation technique using the generalized cross-correlation (GCC)
[15] suffers from the combined effects of these two phenomena.

Recent methods circumvent the effect of dispersion by perform-
ing TDOA estimation on component(s) of a single frequency or
within a narrow frequency band. In addition, the effect of multipath
is mitigated by focusing on the onset of each signal, where only its
initial arrival but no reflection is present [8–12]. Authors in [11]

extract the initial part of each signal as where the first dip and peak
are observed before application of GCC. Other techniques avoid
direct estimation of TDOA and adopt the indirect approach of first
estimating the time-of-arrival (TOA) at each sensor. The TDOA
is subsequently obtained as the difference between the estimated
TOAs. The TOA of a signal can be associated with its phase tran-
sit point which corresponds to the maximum change in frequency
distribution of the received signal [8]. However, for a relatively
long noise-to-signal transition period, the frequency distribution
varies slowly, resulting in erroneous phase transit point estimates.
The TiF-HA method [10] converts the short-time Fourier transform
(STFT) coefficients of the signal into Hermitian angles (HA) and it
was noted that the standard deviation of HA across frequency bins
decreases abruptly as the signal arrives. Techniques such as in [8]
and [10] are shown to be suitable only for small surfaces where the
noise-to-signal transtion is abrupt [12]. For gradual transition, the
transition can be modeled using the four-parameter logistic func-
tion and instead of explicitly estimating the TOA, TDOA estimates
are obtained as the difference in the translation parameters of the
models fitted for each sensor-received signal [12]. While the use of
translation parameter partially compensates the TDOA estimation
uncertainty due to gradual transitions, it does not directly address
the problem of gradual transition.

In this work, we employ a statistical method to estimate the start-
ing point of the noise-to-signal transition. While the use of transla-
tion parameter in [12] inherits the uncertainty of a long transition
period, our approach of estimating the starting point of the transi-
tion period does not suffer from this uncertainty. It however requires
good signal-to-noise ratio (SNR) to achieve good estimation. We
also propose in this work procedures to improve TOA/TDOA esti-
mation accuracy in the presence of noise, which relies on construct-
ing a statistical TOA profile for each sensor-received signal from its
frequency components. It will be shown later in the experiment re-
sults that our proposed technique can achieve better localization of
the impact source compared to existing techniques.

2. THE PROPOSED TOA ESTIMATION ALGORITHM

2.1. Analysis of impact-induced signals

Due to velocity dispersion, for a sensor-received signal x(n), dif-
ferent frequency components arrive at the sensor at different time
instants. Therefore, the TOA can be determined only for each fre-
quency component, rather than for the whole signal. We first extract
components of x(n) corresponding to a set of selected frequencies
fk, k = 1, . . . ,K. The arrival of x(n) is then characterized by the
set that includes the TOA of each component.
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Fig. 1: Frequency components extracted from a typical vibration signal induced by a finger tap on glass surface where (a) the sensor-received
signal is not modified and (b) white Gaussian noise is added to the signal at SNR of 10 dB. The black solid lines represent the real parts of
the frequency components while the dashed lines represent their respective magnitudes. The thick gray lines represent the kurtosis sequences
γk(n) obtained from (9). The black dots represent the TOAs estimated using γk(n).

Extraction of the component zk(n) corresponding to frequency
fk can be achieved using a narrow bandpass filter centered at fk.
Here, according to the Heisenberg uncertainty principle, there is a
trade-off between time and frequency resolutions [16]. While vari-
ous filtering technique can be applied, we employ Gabor filters for
their well-known property of providing the best time-frequency res-
olution [17]. The component zk(n) is then obtained as

zk(n) = x(n) ∗ Ψk(n), (1)

where ∗ denotes the convolution operator and the Gabor function is
given as

Ψk(n) =
1
4
√
π

√
ωk
ς

exp

[
−1

2

(
ωkn

ς

)2
]

exp (−ωkn) , (2)

with ωk = 2πfk/fs, fs being the sampling frequency. The parame-
ter ς determines the spread of Ψk(n) in time as well as in frequency.
The real part and the magnitude of each extracted complex signal
zk(n) are illustrated in Fig. 1(a) for a typical sensor-received signal
due to a finger tap on a glass surface.

In this work, the vibration signals are captured by sensors whose
frequency responses roll off beyond 10 kHz. In such a low frequency
range, only the flexural mode of vibration is present [18], where the
wave propagation velocity is proportional to the square root of the
vibration frequency. This velocity can be expressed as [19]

c(f) = 4

√
E

12ρ(1− ν2)

√
2πfLz, (3)

where the modulus of elasticity E, the flexural rigidity ρ , and the
Poisson’s ratio ν are material-dependent properties, and Lz is the
thickness of the surface. The time required for the component of
frequency f to arrive at the sensor is given by

τ(f) = η/
√
f, (4)

where η = d/ 4
√
π2L2

zE/ [3ρ(1− ν2)], d being the distance from
the impact location to the sensor. Considering only signal com-
ponents within a frequency band centered at fc, i.e., fk ∈ (fc −
∆f , fc + ∆f ), k = 1, . . . ,K, the variation among the TOAs τk
of zk(n) is limited to ∆τ ≈

∣∣∣ dτdf (fc)
∣∣∣∆f = η∆f/(2

√
f3

c ). By
selecting a sufficiently narrow bandwidth ∆f , ∆τ becomes negli-
gibly small so that all τk for a particular sensor can be considered
equal. Such an effort to reduce the effect of dispersion is illus-
trated in Fig. 1(a), where fk are selected within 3 kHz to 5 kHz.
The TOAs τk (estimated using the method proposed in the next sec-
tion), represented by a dot (•) in each subplot, can be seen rela-
tively aligned at a specific time instant. The arrival of the signal can
now be characterized by the TOA set τ = {τ1, . . . , τK}. While
a common TOA can be estimated as τ̂=

∑K
k=1 τk/K, the spread

στ =
[∑K

k=1 (τk − τ̂)2 /K
]1/2

represents the quality of the es-
timation, where large στ implies high uncertainty of the estimate.
In addition, outliers in τ can be removed to obtain a more accurate
estimate.

2.2. Kurtosis for TOA estimation

In this section, we estimate the arrival time for each fk-component
of x(n). While the noise-to-transition in zk(n) may occur gradu-
ally, we avoid the uncertainty of the long transition period by esti-
mating its starting point. The starting point is defined as the time
instant when the energy of zk(n) deviates from that of the back-
ground noise. To capture the appearance of the signal on the back-
ground noise, we compute the kurtosis sequence for a sliding length-
L frame zk(n) = [zk(n), . . . , zk(n + L − 1)]T, where T is the
transposition operator. Due to the sensitivity of the kurtosis to out-
liers, kurt {zk(n)} exhibits a large value when the energy of zk(n)
exceeds that of the noise. This results in a sharp rising edge in the
kurtosis sequence whenever an energy deviation occurs. However,
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due to the high variation in energy of zk(n) after its arrival, direct
computation of kurt {zk(n)} results in a non-smooth sequence with
multiple peaks, as illustrated in Fig. 2(b). This makes it challenging
to determine the exact instant when zk(n) arrives. To address this
problem, we model zk(n) as a realization from a harmonic random
process with frequency fk defined as

Zk(n) = ak(n)e2πfkn+ϕk(n), (5)

where ak(n) = |zk(n)| and ϕk(n) is a random variable uniformly
distributed on [−π, π]. Now, instead of kurt {zk(n)}, we compute
the kurtosis for eachZk(n) = [Zk(n), . . . , Zk(n+L−1)]T as [20]

γk(n) = κ4 {Zk(n)}/κ2
2 {Zk(n)}, (6)

where κ2 {Zk(n)} and κ4 {Zk(n)} are the second and fourth cu-
mulants of Zk(n), respectively.

It can easily be seen from (5) that E {Zk(n)} = 0, which yields
E {Zk(n)} =

∑n+L−1
i=n E {Zk(i)} = 0. The second and fourth

cumulants can therefore be respectively reduced to

κ2 {Zk(n)} = E {Zk(n)Z∗k(n)}

=
1

L

n+L−1∑
i=n

1

2π

∫ π

−π
zk(n)z∗k(n)dϕk(n)

=
1

L

n+L−1∑
i=n

|zk(n)|2 , (7)

and

κ4 {Zk(n)} = E {Zk(n)Z∗k(n)Zk(n)Z∗k(n)}

=
1

L

n+L−1∑
i=n

1

2π

∫ π

−π
zk(n)z∗k(n)zk(n)z∗k(n)dϕk(n)

=
1

L

n+L−1∑
i=n

|zk(n)|4 , (8)

where Z∗k(n) and z∗k(n) are the complex conjugates of Zk(n) and
zk(n), respectively. As a result, the kurtosis sequence is obtained as

γk(n) =
1
L

∑n+L−1
i=n |zk(i)|4(

1
L

∑n+L−1
i=n |zk(i)|2

)2 . (9)

We note from (9) that γk(n) is an energy-based measure. There-
fore, similar to existing energy-based TOA techniques such as TiF-
HA and STFT-Logistic [10, 12], utilization of γk(n) also requires
high signal-to-noise ratio (SNR). The effect of SNR on TOA es-
timation is shown in Fig. 1(b), where x(n) is contaminated with
white Gaussian noise. While the overall SNR is 10 dB, when con-
sidering each component individually, the SNR decreases with fre-
quency. This is because high-frequency components of x(n) are of
less power than low-frequency components. As can be seen in Fig. 1,
empirically, an empirically determined SNR of at least 10 dB is nec-
essary for γk(n) to be well conditioned so that an accurate TOA es-
timate can be obtained. We can, however, perform TOA estimation
only on zk(n) that satisfies the SNR requirement.

To estimate the SNR for each zk(n), the silent period is first
estimated from the signal x(n). Applying kurtosis on the sliding
frame x(n) = [x(n), . . . , x(n+ L− 1)]T, we obtain

γ(n) = κ4 {x(n)}/κ2
2 {x(n)}

=
1
L

∑n+L−1
i=n [x(i)− x(n)]4(

1
L

∑n+L−1
i=n [x(n+ i)− x(n)]2

)2 , (10)
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Fig. 2: The kurtosis sequences and their respective curvatures. The
sequence γk(n) in (a) is the kurtosis of Zk(n), computed as in (9),
while the kurtosis sequence in (b) is computed from zk(n). The
curvature of γk(n) in (a) can be utilized to determine the starting
point of the rising edge in γk(n). The starting point (•) corresponds
to the peak of ξk(n), denoted by ◦.

where x(n) =
∑n+L−1
i=n x(i)/L. An initial estimate of the onset

time separating the silent period and the signal period is then given
as

τon = argmax
n

γ(n). (11)

The silent period is subsequently determined as [1, τon −∆], where
∆ is a buffer length chosen empirically to guarantee that the signal
content is absent during the silent period. Similarly, the signal period
is determined as [τon + ∆′, N ] for some empirical value ∆′. The
SNR of each zk(n) is then estimated as

SNRk =

∑N
i=τon+∆′ zk(n)z∗k(n)/ (N − τon −∆′ + 1)∑τon−∆

i=1 zk(n)z∗k(n)/ (τon −∆)
. (12)

2.3. Arrival time estimation using curvature

While γk(n) exhibits a sharp rising edge on noise-to-signal transi-
tion, there is no knowledge of a correct threshold value that γk(n)
would exceed at the transition point. Thresholding is therefore not
an appropriate approach for determining the starting point of the ris-
ing edge. Here, we determine the point by utilizing the curvature
of γk(n). The curvature of a function measures how fast a function
changes its direction, and a sharp rising edge corresponds to such a
change being sudden. The curvature of γk(n) at point n is given by

ξk(n) = ∆2γk(n)
[
1 + (∆γk(n))2

]−3/2
, (13)

where ∆γk(n) = γk(n + 1) − γk(n) and ∆2γk(n) = ∆γk(n +
1)−∆γk(n) = γk(n+ 2)− 2γk(n+ 1) + γk(n) are, respectively,
the first and second discrete difference of γk(n). The arrival time of
zk(n) is estimated as

τk = argmax
n

ξk(n). (14)

It is worth noting that for a noisy function, its curvature fluctu-
ates significantly since ξk(n) is sensitive to the the sign of ∆2γk(n),
and therefore is not a good measure for edge detection. However, the
envelope |zk(n)| is a relatively low frequency signal with its maxi-
mum frequency negligibly small compared to fk. Therefore, ξk(n)
can be utilized as shown in Fig. 2(a). This is also the advantage of
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γk(n) over other non-smooth measures such as the kurtosis directly
computed from zk(n), denoted by γ′k(n), whose curvature ξ′k(n)
fluctuates significantly as illustrated in Fig. 2(b).

2.4. TDOA estimation

Consider the signals x1(n), ..., xR(n) captured by R surface-
mounted sensors. For each xi(n), i = 1, ..., R, denote by τki the
TOA estimated for its fk-component zki (n) using (14). The TDOA
between zki (n) and zkj (n) for each sensor pair (i, j) is given by

τki,j = τki − τkj . (15)

Since the frequencies fk are chosen within a narrow band where
velocity dispersion is negligible, τki,j are all equal to a common value
τi,j . In practice, τki,j will be randomly distributed in a neighborhood
of τi,j . The TDOA between {zki } and {zkj } can be estimated as

τ̂i,j =
1

K

K∑
k=1

τki,j . (16)

Note that the quality of the estimate τ̂i,j depends on the consistency
of τ i,j =

{
τ1i,j , . . . , τ

K
i,j

}
. To achieve better accuracy in source lo-

calization, we only utilize τ i,j that exhibits sufficiently low spread.
This results in a binary weighting matrix [wi,j ] given by

wi,j =

{
1, if στ i,j < τ,
0, otherwise, (17)

where στ i,j =
[∑K

k=1

(
τki,j − τ̂i,j

)2
/K
]1/2

, and τ is an empirical
threshold.

Denoting by fc the center frequency of the band where fk are
selected from, since dispersion is negligible within the band, all fk-
components propagate at the same speed c(fc). This speed can be
estimated during calibration as described in [10]. The source loca-
tion (us, vs) can then be estimated by minimizing the error function

(ûs, v̂s) = argmin
(u,v)

∑
i,j

(
di(u, v)− dj(u, v)

c(fc)
− τ̂i,j

fs

)2

wi,j ,

(18)
where di(u, v) =

√
(u− ui)2 + (v − vi)2 is the distance from an

arbitrary location (u, v) to the ith sensor positioned at (ui, vi). Ex-
isting optimization algorithms such as Levenberg-Marquardt [21] or
Nelder-Mead [22] can be utilized for such minimization.

3. EXPERIMENT RESULTS

We evaluate the performance of the proposed algorithm using differ-
ent sets of real data collected on a glass plate of dimension 1.2 m×
1.0 m × 5.0 mm. On the plate surface, impacts are generated by
either a finger or a metal stylus at the locations (0.3, 0.3), (0.3, 0.5),
(0.3, 0.7), (0.5, 0.3), (0.6, 0.5), (0.6, 0.7), (0.9, 0.3), (0.9, 0.5),
and (0.9, 0.7) (all the dimensions are in meters). At each location,
a set of five impacts are generated, and hence a total of forty-five
test cases are performed for each experiment setup. The induced vi-
brations are captured by eight surface-mounted Murata PKS1-4A10
piezoelectric shock sensors mounted at the corners and the mid-
points of the edges, 0.1 m away from the plate boundaries. The
sensor outputs are subsequently digitized at a sampling frequency
of fs = 96 kHz. In order to quantify the overall performance of
each algorithm on a set of data, the root-mean-square error (RMSE)
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Fig. 3: Performance comparison of the proposed algorithm with that
of TiF-HA [10] and STFT-Logistic [12] using (a) RMSE and (b)
standard deviation of the localization errors (STDE).

and the standard deviation (STDE) of the localization errors for all
impacts in the set are employed.

Here we compare the performance of our proposed algorithm
with that of TiF-HA [10] and STFT-Logistic [12], which have been
shown to outperform other methods such as the KLID-based [8] or
scalogram-based [23] by significant margins. It can be seen from
Fig. 3 that the proposed algorithm and STFT-Logistic outperform
the TiF-HA in both cases. This is because TiF-HA assumes abrupt
noise-to-signal transitions which is unlikely the case for vibration
signals captured on large plates. In addition, STFT-Logistic only
modestly outperforms TiF-HA for taps generated by fingers. For
taps generated by fingers, which may include vibrations due to flesh,
nail and bone, the transition becomes complex and is not correctly
described by the logistic function. This is reflected in the modest
margin of STFT-Logistic against TiF-HA. Our proposed algorithm,
however, captures the starting instant of the transition period, and
therefore is not affected by the complex transition. As a result, our
proposed algorithm outperforms both STFT-Logistic and TiF-HA by
decent margins.

4. CONCLUSION

In our proposed TDOA-based algorithm for HCI applications, fre-
quency components of each sensor-received signal are first modeled
as harmonic random processes. The theoretical kurtosis is then de-
rived for each process, which exhibits a sharp rising edge when the
signal energy deviates from that of the background noise. Due to
the smoothness of the derived kurtosis sequence, its curvature can
be utilized to determine the starting point of the rising edge as the
arrival time of the signal. While the noise-to-signal transition may
be gradual, the proposed algorithm captures the starting point of the
transition period and therefore avoids the complication of transition
modeling. Experiment results show that the proposed algorithm out-
performs existing methods, especially when the transition is gradual
and complicated as in the case for impacts generated by fingers.
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