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ABSTRACT
In this paper, we develop new multiclass classification

algorithms for detecting people and vehicles by fusing data
from a multimodal, unattended ground sensor node. The spe-
cific types of sensors that we apply in this work are acous-
tic and seismic sensors. We investigate two alternative ap-
proaches to multiclass classification in this context — the
first is based on applying Dempster-Shafer Theory to perform
score-level fusion, and the second involves the accumulation
of local similarity evidences derived from a feature-level fu-
sion model that combines both modalities. We experiment
with the proposed algorithms using different datasets obtained
from acoustic and seismic sensors in various outdoor environ-
ments, and evaluate the performance of the two algorithms
in terms of receiver operating characteristic and classifica-
tion accuracy. Our results demonstrate overall superiority of
the proposed new feature-level fusion approach for multiclass
discrimination among people, vehicles and noise.

Index Terms— Sensor fusion, multiclass classification,
target detection, tracking.

1. INTRODUCTION

Detection and classification of people and vehicles in outdoor
environments is important in various applications related to
defense, border patrol, and surveillance. For example, such
capabilities help to guard specific regions against enemy in-
trusion and attack, and to protect borders between countries.
In these applications, acoustic and seismic sensors are fre-
quently employed because of their power efficiency and re-
duced computational requirements compared to other sensing
modalities, such as image-based sensing.

Signals from acoustic and seismic sensors have different
spectral characteristics in the presence of people and vehicles.
This diversity in sensor response provides potential for greater
accuracy when signals from both modalities are fused as op-
posed to solutions that employ only acoustic or only seismic
sensors. Voices of people typically generate acoustic signals
in the range of 200–800 Hz, while footsteps of people gen-
erate seismic signals in the range of 1.9–2.79 Hz [1]. For

vehicles, Altmann [2] analyzes spectral characteristics of sets
of signals collected from acoustic and seismic sensors. This
analysis reveals similarities and differences in signal char-
acteristics between the two modalities along with their in-
fluences from factors that include the engine rotation rate,
number of engine cylinders, vehicle speed, and track element
length (for tracked vehicles).

In this paper, we investigate fusion algorithms for multi-
class classification among people, vehicles, and noise (the ab-
sence of people or vehicles) using signals from acoustic and
seismic sensors. We develop and comparatively evaluate two
different multiclass algorithms, a score-level fusion algorithm
that is based on Dempster-Shafer Theory (DST), and an accu-
mulative algorithm that exploits feature-level fusion. Through
an extensive experimental comparison, we demonstrate that
our feature-level fusion algorithm achieves significantly bet-
ter classification performance compared to the DST-based ap-
proach.

A distinguishing aspect of our work is our focus on fu-
sion techniques for multiclass classification using both acous-
tic and seismic signals. This complements related prior work
that has investigated binary classification using acoustic and
seismic signal processing, but has not addressed multiclass
classification problems (e.g., see [3]). Also, previous work
on multiclass classifiers for people, vehicles, and noise (e.g.,
see [4, 5] has emphasized use of acoustic signals. In contrast
to these works, this paper contributes fusion techniques for
classification using both acoustic and seismic signals.

2. RELATED WORK

Various algorithms can be applied naturally to multiclass clas-
sification problems. These include k-nearest neighbor [6], de-
cision trees [7,8], neural networks [9], and naive Bayes classi-
fiers [10]. Other algorithms convert a multiclass problem into
a set of binary classification problems, which are then solved
using more powerful binary classifiers. The techniques that
we develop belong to this second class of algorithms. We de-
compose our targeted multiclass classification problem into
three binary classification problems — noise vs. person, noise
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vs. vehicle, and person vs. vehicle.
A fusion architecture for distinguishing between people

and animals using different ultrasonic, seismic and passive
infrared sensors is proposed in [3]. In this work, the decisions
of different binary classifiers are fused to detect targets (peo-
ple/animals), and to distinguish between the people and ani-
mal classes whenever a target is detected. Our work differs
from this work in that we incorporate a feature-level fusion
approach; we address multiclass classification among noise,
people, and vehicle classes; and we employ acoustic and seis-
mic sensor types.

Dempster-Shafer Theory (DST) [11] is a common ap-
proach used for late fusion, where information from multi-
ple classifiers are combined to produce a single output. For
example, Lee et al. [12] apply DST to integrate decisions of
classification and detection, and demonstrate that this integra-
tion improves the performance of both classification and de-
tection. Wu et al. [13] propose general methods for fusing the
signals from multiple sensors to perform binary classification
tasks.

Accumulative methods, like the Hough transform [14],
have demonstrated excellent performance in a wide range
of pattern recognition problems, including image registration
[15] and biometrics [16]. The methods used in [15, 16] ac-
cumulate local similarity evidences (i.e. probabilities), which
are provided by explicitly estimating the probability density
function (pdf) over the feature space. The disadvantages of
explicitly computing a pdf are efficiency and scalability.

As discussed in Section 1, the key distinguishing aspect of
our work in this paper compared to related work in the liter-
ature is our joint consideration of seismic signal processing,
acoustic signal processing, and multiclass classification for
border patrol and related sensor network applications. Addi-
tionally, we propose an accumulative fusion framework where
the pdf is learned implicitly through an SVM.

3. FUSION FRAMEWORK

In this section, we propose two fusion algorithms for mul-
ticlass classification using signals from an acoustic-seismic
node. The first is an adaptation to score-level fusion using
DST for multiclass classification. We view this approach as
a baseline in our experiments to assess our second approach,
which is the main fusion approach that is presented in this
paper. This second approach involves the accumulation of
similarity evidences derived from a local feature-level fusion
model. We refer to this second approach as Accumulation of
Local Feature-level Fusion Scores (ALFFS).

3.1. Cepstral Analysis and SVM Classification

For both acoustic and seismic signals in the baseline (DST-
based) and ALFFS approaches, we employ cepstral analysis
for feature extraction [17]. We extract cepstral coefficients

using the feature extraction method described in [4, 18]. In
cepstral analysis, DC components are removed, low order co-
efficients characterize the slow spectrum variation, and higher
order coefficients characterize the fundamental frequency.

For each sensing modality, we select the first 50 cepstral
coefficients for training and testing. We apply SVM classi-
fiers [19,20] with polynomial kernels for binary classification
using the extracted features for each modality. The integration
of multimodal features and SVM classifiers in the baseline
and ALFFS fusion architectures is illustrated in Figure 1(a)
and Figure 1(b), respectively. In Section 3.2 and Section 3.3,
we elaborate on the design of these two alternative fusion ar-
chitectures.

In Figure 1 and throughout the remainder of this paper,
we abbreviate “noise”, “person”, and “vehicle” — the three
available decision classes — by N , P , and V , respectively.
We denote the set of all available decision classes as ∆ =
{N,P, V }.

3.2. Baseline Fusion Architecture

In our baseline fusion architecture, we adapt score-level fu-
sion with DST to perform multiclass classification. For each
distinct pair of decision classes (DPDC), we employ DST fu-
sion without weights as in [13]. Specifically, suppose that we
have a pair of binary SVM classifiers Z[ρ] = {Cα[ρ], Cσ[ρ]}
that discriminate between the two elements of a DPDC ρ =
{X,Y } ⊂ ∆ based on signals of type α and σ, where α and σ
represent the acoustic and seismic sensing modalities, respec-
tively. Then based on DST, the score S(Z,A) associated with
classifier pair Z and decision class A ∈ ρ can be expressed as

S(Z,A) =
Belief A
Belief ¬A

=

∑
Eρ,α∩Eρ,σ=A

Eρ,αEρ,σ∑
Eρ,α∩Eρ,σ=¬A

Eρ,αEρ,σ
. (1)

Here, ¬A is the element of ρ other than A. Additionally,
Eρ,x denotes the evidence associated with ρ that is derived
from sensing modality x ∈ {α, σ}. The value of Eρ,x for
each modality x can be derived from the scores of the two
associated SVM classifiers.

Equation 1 can be viewed as a standard DST-based ap-
proach to binary classification (for discrimination between
A and ¬A) using SVM-based binary classifier subsystems.
We extend this approach to multiclass classification by in-
stantiating 3 different pairs of SVM classifiers {Z[ρ] | ρ ∈
{{N,P}, {N,V }, {P, V }}, where each of these classifier
pairs is connected to a fusion subsystem that operates based
on Equation 1. The results from these 3 fusion subsystems
are then combined using voting, as illustrated in Figure 1(a).
Similar to [21, 22], the voting method chooses the class that
is classified most frequently by the three SVMs.
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Fig. 1: Illustration of the baseline (a) and ALFFS (b) fusion architectures.

3.3. ALFFS

Our ALFFS approach is motivated by the significant differ-
ences in spectral characteristics between acoustic and seismic
signals. To systematically incorporate these different charac-
teristics into the multiclass classification process, ALFFS ap-
plies concatenated features that are derived from both acous-
tic and seismic inputs.

Algorithm 1 presents a pseudocode representation of the
ALFFS approach. In the signal processing system represented
in Algorithm 1, the subscripts α and σ are used to repre-
sent correspondence with acoustic and seismic signals, re-
spectively, as in Section 3.2. The input to the system consists
of data frames (segments of contiguous signal samples) Γα
and Γσ , and two parameters wn and wr, which respectively
specify the number of windows and the ratio of inter-window
overlap that are to be employed when processing the input
frames. The two signals Γα and Γσ are corresponding acous-
tic and seismic signals, meaning the two modalities observe
the same activity.

In the first two steps of Algorithm 1, a windowing func-
tion Window decomposes the input data frames into overlap-
ping windows consisting of wn samples each, where the ratio
of overlap is determined by the parameter wr. The function
fcepstral is a function that returns cepstral features for a given
window of signal samples. The concatenation of acoustic and
seismic features for each window is performed by the func-
tion fconcat .

The outer for loop (line 8) iterates through all relevant
DPDCs. For each DPDC p and window index j, the algo-
rithm computes a binary classification score Scorep(j) by ap-
plying an SVM classifier SVM p that is trained specifically
for DPDC p. Line 12 then accumulates all of the scores

Algorithm 1: A pseudocode representation of the
ALFFS approach.

Input : Γα, Γσ , wn, wr
Output: Class

1 Dα(1), Dα(2), . . . , Dα(wn)←Window(Γα, wn, wr)
2 Dσ(1), Dσ(2), . . . , Dσ(wn)←Window(Γσ, wn, wr)
3 for i = 1 to wn do
4 Fα(i)← fcepstral(Dα(i))
5 Fσ(i)← fcepstral(Dσ(i))
6 Fconcat(i)← fconcat(Fα(i), Fσ(i))

7 end
8 for p ∈ {{N,P}, {N,V }, {P, V }} do
9 for j = 1 to wn do

10 Scorep(j)← SVM p(Fconcat(j))
11 end
12 κ(p)← Scorep(1)+Scorep(2)+ . . .+Scorep(wn)
13 R(p)← fdec,p(κ(p))

14 end
15 Class ← fvoting(R({N,P}), R({N,V }), R({P, V }))

for the given DPDC p to provide a single composite score
κ(p) across all windows and both sensing modalities. This
composite score is then thresholded by the decision function
fdec,p to produce the decision R(p) associated with DPDC p.
In our experiments, we use a common threshold of 0 for all
three decision functions {fdec,p}.

The three decisions {R(x)} are then operated on using a
voting process, represented by the function fvoting , to pro-
duce the final multiclass classification result Class . We use
the same voting process here as in the adapted DST approach
of Section 3.2.
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(c) Test ID #3.
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(d) Test ID #4.

Fig. 2: ROC curves for multiclass classification.

4. EXPERIMENTS

In this section, we present an experimental evaluation of the
Adapted DST and ALFFS approaches, which were intro-
duced in Section 3.2 and Section 3.3, respectively. In our
evaluation, we employ 4 different datasets, which we refer to
as Datasets #1–#4. Datasets #1–#3 were collected on Spesutie
Island at the Aberdeen Proving Grounds in Maryland, USA
during July 28–30, 2015. These three datasets were collected
from different sensors installed in different locations and at
different times of day. Further details about Datasets #1–#3
can be found in [23]. Dataset #4 was collected at the US Army
Research Laboratory, Adelphi, Maryland, USA on Septem-
ber 16, 2013. Datasets #1–#3 were collected from soil, while
Dataset #4 was collected from asphalt. Each dataset contains
1000 data frames, where each frame contains 6 seconds of
acoustic and seismic data sampled at 4096Hz.

For training and testing, we used input data segments
(IDSs) that each consist of 500 contiguous data frames from
one of the four datasets. For training, we randomly ex-
tracted 50 different IDSs from Dataset #1 using the MAT-
LAB crossvalind function. Similarly, for testing, we
used crossvalind to extract 50 different IDS from each
of the four available datasets. Thus, we employed 50 IDSs
for training, and 200 IDSs for testing. We refer to the set of
50 IDS used for testing that we extracted from each Dataset
#X as “Test ID #X”. For ALFFS, we used wn = 50 and
wr = 0.4.

To evaluate classification performance, we compared the
Adapted DST and ALFFS approaches in terms of their mea-
sured ROC curves and accuracy levels. Among the different
ways to compute ROC curves for multiclass problems, we
employed the method discussed in [24], which is suitable for
multiclass classifiers that are composed of binary classifiers.
In this method, the multiclass ROC curve is computed by av-
eraging the ROC curves across the corresponding set of pair-
wise (1-to-1) classifiers. Figure 2 and Table 1 show the mea-
sured ROC curves and accuracy levels, respectively. From
these results, we see that the Adapted DST approach shows no
significant performance improvement compared to the single-

Test ID Acoustic Seismic DST ALFFS

#1 64.5731 59.3908 66.2605 86.0842
#2 61.3988 57.8397 60.3166 73.8357
#3 56.9138 51.7074 57.2305 73.3988
#4 53.0541 67.2345 61.3026 76.9379

avg. 58.9850 59.0431 61.2776 77.5642

Table 1: Accuracy comparison (%).

modality classifiers. In contrast, ALFFS exhibits significant
improvements compared to the single-modality classifiers, as
well as the Adapted DST approach. Specifically, ALFFS
achives 0.9076, 0.8389, 0.8059, and 0.7120 true positive rate
when operating at 0.2 false positive rate for Test ID #1-#4, re-
spectively. Whereas, the baseline approach achieves 0.5858,
0.6278, 0.5070, and 0.3188 at the same false positive rate.
Thus, ALFFS achieves fewer false alarms, even when only
using a single seismic and single acoustic source. The results
in Table 1 show that ALFFS achieves an absoulte improve-
ment of 16.3% (relative improvement of 26.6%) in accuracy
compared to the baseline fusion on average.

5. CONCLUSION

In this paper, we have introduced an algorithm, called Accu-
mulation of Local Feature-level Fusion Scores (ALFFS), for
multiclass classification among people, vehicles, and noise
using a single unattended ground sensor node. ALFFS op-
erates by extracting cepstral features, applying feature-level
fusion, and applying a bank of support vector machines across
sets of concatenated features that are extracted from overlap-
ping windows of the multimodal input signals. We have also
introduced an adaptation to our targeted multiclass classifica-
tion problem of sensor fusion based on Dempster-Shafer The-
ory (DST). Through extensive experiments, we have demon-
strated that ALFFS achieves an average of 16.3% (26.6%)
absolute (relative) improvement over the adapted DST ap-
proach. Moreover, ALFFS achieves a significant reduction
in the number of false alarms compared to the adapted DST
approach (and the individual modalites).
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